密度泛函理论势中的平台:解析推导和有用的近似。

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2025-04-08 Epub Date: 2025-03-27 DOI:10.1021/acs.jctc.4c01771
Nathan E Rahat, Eli Kraisler
{"title":"密度泛函理论势中的平台:解析推导和有用的近似。","authors":"Nathan E Rahat, Eli Kraisler","doi":"10.1021/acs.jctc.4c01771","DOIUrl":null,"url":null,"abstract":"<p><p>Density functional theory (DFT) is an extremely efficient and widely used method for electronic structure calculations. However, the quality of such calculations crucially depends on the quality of the approximation used for the exchange-correlation functional, for which there is no exact form. One important feature of the exact exchange-correlation potential, which common approximations usually do not capture, is the spatial steps and plateaus that occur in various scenarios, including ionization, excitation, dissociation, and charge transfer. In this paper, we derive an analytical expression for the plateau in the Kohn-Sham potential that forms around the center of the system, when the number of electrons infinitesimally surpasses an integer. The resulting formula is the first analytical expression of its kind. The derivation is performed using the orbital-free DFT framework, analyzing both the Kohn-Sham-Pauli and the Pauli potentials. Analytical results are compared to exact calculations for small atomic systems, showing close correspondence and high accuracy. Furthermore, it is shown that plateaus can be produced also when relying on approximate electron densities, even those obtained with the simplest exchange-correlation form─the local density approximation.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"3476-3492"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plateaus in the Potentials of Density-Functional Theory: Analytical Derivation and Useful Approximations.\",\"authors\":\"Nathan E Rahat, Eli Kraisler\",\"doi\":\"10.1021/acs.jctc.4c01771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Density functional theory (DFT) is an extremely efficient and widely used method for electronic structure calculations. However, the quality of such calculations crucially depends on the quality of the approximation used for the exchange-correlation functional, for which there is no exact form. One important feature of the exact exchange-correlation potential, which common approximations usually do not capture, is the spatial steps and plateaus that occur in various scenarios, including ionization, excitation, dissociation, and charge transfer. In this paper, we derive an analytical expression for the plateau in the Kohn-Sham potential that forms around the center of the system, when the number of electrons infinitesimally surpasses an integer. The resulting formula is the first analytical expression of its kind. The derivation is performed using the orbital-free DFT framework, analyzing both the Kohn-Sham-Pauli and the Pauli potentials. Analytical results are compared to exact calculations for small atomic systems, showing close correspondence and high accuracy. Furthermore, it is shown that plateaus can be produced also when relying on approximate electron densities, even those obtained with the simplest exchange-correlation form─the local density approximation.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"3476-3492\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c01771\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01771","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

密度泛函理论(DFT)是一种非常有效和广泛应用的电子结构计算方法。然而,这种计算的质量在很大程度上取决于交换相关函数的近似值的质量,而交换相关函数没有精确的形式。精确交换相关电位的一个重要特征是在电离、激发、解离和电荷转移等各种情况下发生的空间阶跃和平台,这是普通近似通常无法捕捉到的。本文导出了当电子数无限小超过整数时,在系统中心周围形成的Kohn-Sham势平台的解析表达式。所得公式是同类解析表达式中的第一个。推导使用无轨道DFT框架,同时分析了Kohn-Sham-Pauli势和Pauli势。分析结果与小原子系统的精确计算结果进行了比较,显示出密切的对应关系和较高的精度。此外,还表明,当依赖于近似的电子密度时,即使是用最简单的交换相关形式──局部密度近似得到的电子密度,也会产生平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plateaus in the Potentials of Density-Functional Theory: Analytical Derivation and Useful Approximations.

Density functional theory (DFT) is an extremely efficient and widely used method for electronic structure calculations. However, the quality of such calculations crucially depends on the quality of the approximation used for the exchange-correlation functional, for which there is no exact form. One important feature of the exact exchange-correlation potential, which common approximations usually do not capture, is the spatial steps and plateaus that occur in various scenarios, including ionization, excitation, dissociation, and charge transfer. In this paper, we derive an analytical expression for the plateau in the Kohn-Sham potential that forms around the center of the system, when the number of electrons infinitesimally surpasses an integer. The resulting formula is the first analytical expression of its kind. The derivation is performed using the orbital-free DFT framework, analyzing both the Kohn-Sham-Pauli and the Pauli potentials. Analytical results are compared to exact calculations for small atomic systems, showing close correspondence and high accuracy. Furthermore, it is shown that plateaus can be produced also when relying on approximate electron densities, even those obtained with the simplest exchange-correlation form─the local density approximation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信