一种高频变换器电路参数在线估计框架

IF 0.7 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Nicholas Green, Mohammed Agamy
{"title":"一种高频变换器电路参数在线估计框架","authors":"Nicholas Green,&nbsp;Mohammed Agamy","doi":"10.1049/ell2.70230","DOIUrl":null,"url":null,"abstract":"<p>In this paper a parameter estimation method of high frequency switching power converters is proposed. Parameters are estimated through measurement of basic circuit voltage and current quantities and using simple feed forward neural networks to establish correlations between circuit parameter variations and general converter performance. This allows the estimation of internal semiconductor device or passive component parameters that would be challenging to measure directly. This approach serves as a promising enabler for power converter digital twins and for converter health monitoring. The proposed framework is developed and verified for an LLC resonant converter. Parameter predictions achieved mean absolute errors below 4.12% and an average MAE of 1.57% for all parameters.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"61 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70230","citationCount":"0","resultStr":"{\"title\":\"A Framework for Online Estimation of High Frequency Converter Circuit Parameters\",\"authors\":\"Nicholas Green,&nbsp;Mohammed Agamy\",\"doi\":\"10.1049/ell2.70230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper a parameter estimation method of high frequency switching power converters is proposed. Parameters are estimated through measurement of basic circuit voltage and current quantities and using simple feed forward neural networks to establish correlations between circuit parameter variations and general converter performance. This allows the estimation of internal semiconductor device or passive component parameters that would be challenging to measure directly. This approach serves as a promising enabler for power converter digital twins and for converter health monitoring. The proposed framework is developed and verified for an LLC resonant converter. Parameter predictions achieved mean absolute errors below 4.12% and an average MAE of 1.57% for all parameters.</p>\",\"PeriodicalId\":11556,\"journal\":{\"name\":\"Electronics Letters\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70230\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70230\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70230","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种高频开关电源变换器的参数估计方法。通过测量基本电路电压和电流量来估计参数,并使用简单的前馈神经网络来建立电路参数变化与一般变换器性能之间的相关性。这允许内部半导体器件或无源元件参数的估计,这将是具有挑战性的直接测量。该方法有望实现功率转换器数字孪生和转换器健康监测。该框架已开发并验证了一个LLC谐振变换器。参数预测的平均绝对误差低于4.12%,平均MAE为1.57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Framework for Online Estimation of High Frequency Converter Circuit Parameters

A Framework for Online Estimation of High Frequency Converter Circuit Parameters

In this paper a parameter estimation method of high frequency switching power converters is proposed. Parameters are estimated through measurement of basic circuit voltage and current quantities and using simple feed forward neural networks to establish correlations between circuit parameter variations and general converter performance. This allows the estimation of internal semiconductor device or passive component parameters that would be challenging to measure directly. This approach serves as a promising enabler for power converter digital twins and for converter health monitoring. The proposed framework is developed and verified for an LLC resonant converter. Parameter predictions achieved mean absolute errors below 4.12% and an average MAE of 1.57% for all parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics Letters
Electronics Letters 工程技术-工程:电子与电气
CiteScore
2.70
自引率
0.00%
发文量
268
审稿时长
3.6 months
期刊介绍: Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews. Scope As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below. Antennas and Propagation Biomedical and Bioinspired Technologies, Signal Processing and Applications Control Engineering Electromagnetism: Theory, Materials and Devices Electronic Circuits and Systems Image, Video and Vision Processing and Applications Information, Computing and Communications Instrumentation and Measurement Microwave Technology Optical Communications Photonics and Opto-Electronics Power Electronics, Energy and Sustainability Radar, Sonar and Navigation Semiconductor Technology Signal Processing MIMO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信