使用TiNi形状记忆合金进行热存储的主动学习辅助搜索

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Deqing Xue, Qian Zuo, Guojun Zhang, Shang Zhao, Bueryi Shen, Ruihao Yuan
{"title":"使用TiNi形状记忆合金进行热存储的主动学习辅助搜索","authors":"Deqing Xue,&nbsp;Qian Zuo,&nbsp;Guojun Zhang,&nbsp;Shang Zhao,&nbsp;Bueryi Shen,&nbsp;Ruihao Yuan","doi":"10.1007/s10853-025-10771-3","DOIUrl":null,"url":null,"abstract":"<div><p>TiNi-based shape memory alloys are promising candidates for thermal storage applications. However, a key indicator of thermal storage property, latent heat, is still less than desirable. Here, we use an active learning method with experimental feedback to guide the discovery of TiNi-based alloys with improved latent heat. The key features that affect latent heat are first screened out from a large feature pool, with which machine learning models are trained and applied to unknown alloys for predictions. We then use Bayesian optimization that considers both predictions and associated uncertainty to recommend alloys for experiments, and the results augment the initial data for next iteration. After four iterations, we successfully synthesized 15 alloys and one, Ti<sub>25</sub>Ni<sub>49.5</sub>Fe<sub>0.5</sub>Hf<sub>25</sub>, exhibits well-balanced latent heat and thermal hysteresis that outperforms reported ones. The designed alloys may find suitable thermal storage applications at elevated temperatures.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 12","pages":"5623 - 5633"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active learning-assisted search for thermal storage used TiNi shape memory alloys\",\"authors\":\"Deqing Xue,&nbsp;Qian Zuo,&nbsp;Guojun Zhang,&nbsp;Shang Zhao,&nbsp;Bueryi Shen,&nbsp;Ruihao Yuan\",\"doi\":\"10.1007/s10853-025-10771-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>TiNi-based shape memory alloys are promising candidates for thermal storage applications. However, a key indicator of thermal storage property, latent heat, is still less than desirable. Here, we use an active learning method with experimental feedback to guide the discovery of TiNi-based alloys with improved latent heat. The key features that affect latent heat are first screened out from a large feature pool, with which machine learning models are trained and applied to unknown alloys for predictions. We then use Bayesian optimization that considers both predictions and associated uncertainty to recommend alloys for experiments, and the results augment the initial data for next iteration. After four iterations, we successfully synthesized 15 alloys and one, Ti<sub>25</sub>Ni<sub>49.5</sub>Fe<sub>0.5</sub>Hf<sub>25</sub>, exhibits well-balanced latent heat and thermal hysteresis that outperforms reported ones. The designed alloys may find suitable thermal storage applications at elevated temperatures.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 12\",\"pages\":\"5623 - 5633\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-10771-3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-10771-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

镍基形状记忆合金是热存储应用的有前途的候选者。然而,热储存性能的关键指标,潜热,仍然不太理想。在这里,我们使用一种带有实验反馈的主动学习方法来指导发现具有改善潜热的镍基合金。首先从一个大型特征池中筛选出影响潜热的关键特征,利用这些特征池训练机器学习模型,并将其应用于未知合金进行预测。然后,我们使用考虑预测和相关不确定性的贝叶斯优化来推荐用于实验的合金,并且结果增加了下一次迭代的初始数据。经过4次迭代,我们成功合成了15种合金,其中Ti25Ni49.5Fe0.5Hf25具有良好的潜热平衡和热滞后性能,优于已有的合金。所设计的合金可以在高温下找到合适的储热应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active learning-assisted search for thermal storage used TiNi shape memory alloys

TiNi-based shape memory alloys are promising candidates for thermal storage applications. However, a key indicator of thermal storage property, latent heat, is still less than desirable. Here, we use an active learning method with experimental feedback to guide the discovery of TiNi-based alloys with improved latent heat. The key features that affect latent heat are first screened out from a large feature pool, with which machine learning models are trained and applied to unknown alloys for predictions. We then use Bayesian optimization that considers both predictions and associated uncertainty to recommend alloys for experiments, and the results augment the initial data for next iteration. After four iterations, we successfully synthesized 15 alloys and one, Ti25Ni49.5Fe0.5Hf25, exhibits well-balanced latent heat and thermal hysteresis that outperforms reported ones. The designed alloys may find suitable thermal storage applications at elevated temperatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信