蒙脱石改性Bi3O4Br催化剂在可见光下高效光催化降解2-MBT

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xuefeng Hu, Chao Wang, Junhan Yang
{"title":"蒙脱石改性Bi3O4Br催化剂在可见光下高效光催化降解2-MBT","authors":"Xuefeng Hu,&nbsp;Chao Wang,&nbsp;Junhan Yang","doi":"10.1007/s10853-025-10791-z","DOIUrl":null,"url":null,"abstract":"<div><p>2-Mercaptobenzothiazole (2-MBT) is a prevalent organic pollutant in the environment that poses significant challenges for complete removal using conventional water treatment methods. In this study, we successfully synthesized Bi<sub>3</sub>O<sub>4</sub>Br/MMT composites by incorporating the clay mineral montmorillonite (MMT), which effectively addresses the issues of low specific surface area and poor adsorption performance commonly observed in traditional Bi<sub>3</sub>O<sub>4</sub>Br materials. Furthermore, the aluminum species in MMT facilitate the transfer of photogenerated electrons from Bi<sub>3</sub>O<sub>4</sub>Br to MMT, thereby inhibiting the recombination of electron–hole pairs and enhancing photocatalytic performance. The photocatalytic properties of the photocatalyst were appraised using 2-MBT as the target contaminant. The Bi<sub>3</sub>O<sub>4</sub>Br/MMT composites demonstrated a remarkable degradation efficiency of nearly 90% for 2-MBT within just 3 min of visible-light irradiation, surpassing 99% after 7 min, along with exceptional cycling stability and structural integrity. Quenching experiments and electron paramagnetic resonance (EPR) analysis identified superoxide radicals (·O<sub>2</sub><sup>−</sup>), holes (h<sup>+</sup>), and electrons (e<sup>−</sup>) as the primary reactive species driving the photocatalytic degradation of 2-MBT. This work provides a promising strategy for the development of environmentally friendly catalytic systems for the efficient degradation of 2-MBT in water.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 12","pages":"5365 - 5380"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-efficiency photocatalytic degradation of 2-MBT under visible light using montmorillonite-modified Bi3O4Br catalysts\",\"authors\":\"Xuefeng Hu,&nbsp;Chao Wang,&nbsp;Junhan Yang\",\"doi\":\"10.1007/s10853-025-10791-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>2-Mercaptobenzothiazole (2-MBT) is a prevalent organic pollutant in the environment that poses significant challenges for complete removal using conventional water treatment methods. In this study, we successfully synthesized Bi<sub>3</sub>O<sub>4</sub>Br/MMT composites by incorporating the clay mineral montmorillonite (MMT), which effectively addresses the issues of low specific surface area and poor adsorption performance commonly observed in traditional Bi<sub>3</sub>O<sub>4</sub>Br materials. Furthermore, the aluminum species in MMT facilitate the transfer of photogenerated electrons from Bi<sub>3</sub>O<sub>4</sub>Br to MMT, thereby inhibiting the recombination of electron–hole pairs and enhancing photocatalytic performance. The photocatalytic properties of the photocatalyst were appraised using 2-MBT as the target contaminant. The Bi<sub>3</sub>O<sub>4</sub>Br/MMT composites demonstrated a remarkable degradation efficiency of nearly 90% for 2-MBT within just 3 min of visible-light irradiation, surpassing 99% after 7 min, along with exceptional cycling stability and structural integrity. Quenching experiments and electron paramagnetic resonance (EPR) analysis identified superoxide radicals (·O<sub>2</sub><sup>−</sup>), holes (h<sup>+</sup>), and electrons (e<sup>−</sup>) as the primary reactive species driving the photocatalytic degradation of 2-MBT. This work provides a promising strategy for the development of environmentally friendly catalytic systems for the efficient degradation of 2-MBT in water.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 12\",\"pages\":\"5365 - 5380\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-10791-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-10791-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

2-巯基苯并噻唑(2-MBT)是环境中普遍存在的有机污染物,常规水处理方法难以完全去除。在这项研究中,我们成功地合成了Bi3O4Br/MMT复合材料,通过添加粘土矿物蒙脱土(MMT),有效地解决了传统Bi3O4Br材料普遍存在的比表面积低和吸附性能差的问题。此外,MMT中的铝基团促进了光生电子从Bi3O4Br向MMT的转移,从而抑制了电子-空穴对的重组,提高了光催化性能。以2-MBT为目标污染物,评价了光催化剂的光催化性能。Bi3O4Br/MMT复合材料在可见光照射3分钟内对2-MBT的降解效率接近90%,7分钟后降解效率超过99%,并且具有出色的循环稳定性和结构完整性。猝灭实验和电子顺磁共振(EPR)分析发现,超氧自由基(·O2−)、空穴(h+)和电子(e−)是驱动2-MBT光催化降解的主要反应物质。本研究为开发高效降解水中2-MBT的环境友好型催化系统提供了一个有希望的策略。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-efficiency photocatalytic degradation of 2-MBT under visible light using montmorillonite-modified Bi3O4Br catalysts

2-Mercaptobenzothiazole (2-MBT) is a prevalent organic pollutant in the environment that poses significant challenges for complete removal using conventional water treatment methods. In this study, we successfully synthesized Bi3O4Br/MMT composites by incorporating the clay mineral montmorillonite (MMT), which effectively addresses the issues of low specific surface area and poor adsorption performance commonly observed in traditional Bi3O4Br materials. Furthermore, the aluminum species in MMT facilitate the transfer of photogenerated electrons from Bi3O4Br to MMT, thereby inhibiting the recombination of electron–hole pairs and enhancing photocatalytic performance. The photocatalytic properties of the photocatalyst were appraised using 2-MBT as the target contaminant. The Bi3O4Br/MMT composites demonstrated a remarkable degradation efficiency of nearly 90% for 2-MBT within just 3 min of visible-light irradiation, surpassing 99% after 7 min, along with exceptional cycling stability and structural integrity. Quenching experiments and electron paramagnetic resonance (EPR) analysis identified superoxide radicals (·O2), holes (h+), and electrons (e) as the primary reactive species driving the photocatalytic degradation of 2-MBT. This work provides a promising strategy for the development of environmentally friendly catalytic systems for the efficient degradation of 2-MBT in water.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信