{"title":"暴胀摄动的隐阿德勒零和软定理","authors":"Zong-Zhe Du","doi":"10.1007/JHEP03(2025)206","DOIUrl":null,"url":null,"abstract":"<p>We derive soft theorems for on-shell scattering amplitudes from non-linearly realised global space-time symmetries, arising from the flat space and decoupling limits of the effective field theories (EFTs) of inflation, while taking particular care of on-shell limits, soft limits, time-ordered correlations, momentum derivatives, energy-momentum conserving delta functions and <i>iε</i> prescriptions. Intriguingly, contrary to common belief, we find with a preferred soft hierarchy among the soft momentum <i>q</i>, on-shell residue <span>\\( {p}_a^0 \\)</span> ± <i>E</i><sub><i>a</i></sub>, and <i>ε</i>, the soft theorems do not have dependence on unconstrained off-shell interactions, even in the presence of cubic vertices. We also argue that the soft hierarchy is a natural choice, ensuring the soft limit and on-shell limit commute. Our soft theorems depend solely on on-shell data and hold to all orders in perturbation theory. We present various examples including polynomial shift symmetries, non-linear realisation of Lorentz boosts and dilatations on how the soft theorems work. We find that the collection of exchange diagrams whose soft momenta are associated with cubic vertices, that are indeterminate in the soft limit, exhibits an enhanced soft scaling. The enhanced soft scaling explains why the sum of such diagrams do not enter the soft theorems non-trivially. We further apply the soft theorems to bootstrap the scattering amplitudes of the superfluid and scaling superfluid EFTs, finding agreement with the Hamiltonian analysis.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)206.pdf","citationCount":"0","resultStr":"{\"title\":\"Hidden Adler zeros and soft theorems for inflationary perturbations\",\"authors\":\"Zong-Zhe Du\",\"doi\":\"10.1007/JHEP03(2025)206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We derive soft theorems for on-shell scattering amplitudes from non-linearly realised global space-time symmetries, arising from the flat space and decoupling limits of the effective field theories (EFTs) of inflation, while taking particular care of on-shell limits, soft limits, time-ordered correlations, momentum derivatives, energy-momentum conserving delta functions and <i>iε</i> prescriptions. Intriguingly, contrary to common belief, we find with a preferred soft hierarchy among the soft momentum <i>q</i>, on-shell residue <span>\\\\( {p}_a^0 \\\\)</span> ± <i>E</i><sub><i>a</i></sub>, and <i>ε</i>, the soft theorems do not have dependence on unconstrained off-shell interactions, even in the presence of cubic vertices. We also argue that the soft hierarchy is a natural choice, ensuring the soft limit and on-shell limit commute. Our soft theorems depend solely on on-shell data and hold to all orders in perturbation theory. We present various examples including polynomial shift symmetries, non-linear realisation of Lorentz boosts and dilatations on how the soft theorems work. We find that the collection of exchange diagrams whose soft momenta are associated with cubic vertices, that are indeterminate in the soft limit, exhibits an enhanced soft scaling. The enhanced soft scaling explains why the sum of such diagrams do not enter the soft theorems non-trivially. We further apply the soft theorems to bootstrap the scattering amplitudes of the superfluid and scaling superfluid EFTs, finding agreement with the Hamiltonian analysis.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 3\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)206.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP03(2025)206\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP03(2025)206","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Hidden Adler zeros and soft theorems for inflationary perturbations
We derive soft theorems for on-shell scattering amplitudes from non-linearly realised global space-time symmetries, arising from the flat space and decoupling limits of the effective field theories (EFTs) of inflation, while taking particular care of on-shell limits, soft limits, time-ordered correlations, momentum derivatives, energy-momentum conserving delta functions and iε prescriptions. Intriguingly, contrary to common belief, we find with a preferred soft hierarchy among the soft momentum q, on-shell residue \( {p}_a^0 \) ± Ea, and ε, the soft theorems do not have dependence on unconstrained off-shell interactions, even in the presence of cubic vertices. We also argue that the soft hierarchy is a natural choice, ensuring the soft limit and on-shell limit commute. Our soft theorems depend solely on on-shell data and hold to all orders in perturbation theory. We present various examples including polynomial shift symmetries, non-linear realisation of Lorentz boosts and dilatations on how the soft theorems work. We find that the collection of exchange diagrams whose soft momenta are associated with cubic vertices, that are indeterminate in the soft limit, exhibits an enhanced soft scaling. The enhanced soft scaling explains why the sum of such diagrams do not enter the soft theorems non-trivially. We further apply the soft theorems to bootstrap the scattering amplitudes of the superfluid and scaling superfluid EFTs, finding agreement with the Hamiltonian analysis.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).