Edward Broadberry, Saurav Das, Anson Hook, Gustavo Marques-Tavares
{"title":"alp向暗光子暗物质的绝热转换","authors":"Edward Broadberry, Saurav Das, Anson Hook, Gustavo Marques-Tavares","doi":"10.1007/JHEP03(2025)215","DOIUrl":null,"url":null,"abstract":"<p>We introduce a mechanism by which a misaligned ALP can be dynamically converted into a dark photon in the presence of a background magnetic field. An abundance of non-relativistic ALPs will convert to dark photons with momentum of order the inhomogeneities in the background field; therefore a highly homogeneous field will produce non-relativistic dark photons without relying on any redshifting of their momenta. Taking hidden sector magnetic fields produced by a first order phase transition, the mechanism can reproduce the relic abundance of dark matter for a wide range of dark photon masses down to 10<sup><i>−</i>13</sup> eV.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)215.pdf","citationCount":"0","resultStr":"{\"title\":\"Adiabatic conversion of ALPs into dark photon dark matter\",\"authors\":\"Edward Broadberry, Saurav Das, Anson Hook, Gustavo Marques-Tavares\",\"doi\":\"10.1007/JHEP03(2025)215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a mechanism by which a misaligned ALP can be dynamically converted into a dark photon in the presence of a background magnetic field. An abundance of non-relativistic ALPs will convert to dark photons with momentum of order the inhomogeneities in the background field; therefore a highly homogeneous field will produce non-relativistic dark photons without relying on any redshifting of their momenta. Taking hidden sector magnetic fields produced by a first order phase transition, the mechanism can reproduce the relic abundance of dark matter for a wide range of dark photon masses down to 10<sup><i>−</i>13</sup> eV.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 3\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)215.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP03(2025)215\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP03(2025)215","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Adiabatic conversion of ALPs into dark photon dark matter
We introduce a mechanism by which a misaligned ALP can be dynamically converted into a dark photon in the presence of a background magnetic field. An abundance of non-relativistic ALPs will convert to dark photons with momentum of order the inhomogeneities in the background field; therefore a highly homogeneous field will produce non-relativistic dark photons without relying on any redshifting of their momenta. Taking hidden sector magnetic fields produced by a first order phase transition, the mechanism can reproduce the relic abundance of dark matter for a wide range of dark photon masses down to 10−13 eV.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).