基于会话推荐的基序和超节点增强门控图神经网络

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ronghua Lin , Chang Liu , Hao Zhong , Chengzhe Yuan , Guohua Chen , Yuncheng Jiang , Yong Tang
{"title":"基于会话推荐的基序和超节点增强门控图神经网络","authors":"Ronghua Lin ,&nbsp;Chang Liu ,&nbsp;Hao Zhong ,&nbsp;Chengzhe Yuan ,&nbsp;Guohua Chen ,&nbsp;Yuncheng Jiang ,&nbsp;Yong Tang","doi":"10.1016/j.neunet.2025.107406","DOIUrl":null,"url":null,"abstract":"<div><div>Session-based recommendation systems aim to predict users’ next interactions based on short-lived, anonymous sessions, a challenging yet vital task due to the sparsity and dynamic nature of user behavior. Existing Graph Neural Network (GNN)-based methods primarily focus on the session graphs while overlooking the influence of micro-structures and user behavior patterns. To address these limitations, we propose a Motif and Supernode-Enhanced Session-based Recommender System (MSERS), which constructs a global session graph, identifies and encodes motifs as supernodes, and reintegrates them into the global graph to enrich its topology and better represent item dependencies. By employing supernode-enhanced Gated Graph Neural Networks (GGNN), MSERS captures both long-term and latent item dependencies, significantly improving session representations. Extensive experiments on two real-world datasets demonstrate the superiority of MSERS over baseline methods, providing robust insights into the role of micro-structures in session-based recommendations.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"187 ","pages":"Article 107406"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motif and supernode-enhanced gated graph neural networks for session-based recommendation\",\"authors\":\"Ronghua Lin ,&nbsp;Chang Liu ,&nbsp;Hao Zhong ,&nbsp;Chengzhe Yuan ,&nbsp;Guohua Chen ,&nbsp;Yuncheng Jiang ,&nbsp;Yong Tang\",\"doi\":\"10.1016/j.neunet.2025.107406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Session-based recommendation systems aim to predict users’ next interactions based on short-lived, anonymous sessions, a challenging yet vital task due to the sparsity and dynamic nature of user behavior. Existing Graph Neural Network (GNN)-based methods primarily focus on the session graphs while overlooking the influence of micro-structures and user behavior patterns. To address these limitations, we propose a Motif and Supernode-Enhanced Session-based Recommender System (MSERS), which constructs a global session graph, identifies and encodes motifs as supernodes, and reintegrates them into the global graph to enrich its topology and better represent item dependencies. By employing supernode-enhanced Gated Graph Neural Networks (GGNN), MSERS captures both long-term and latent item dependencies, significantly improving session representations. Extensive experiments on two real-world datasets demonstrate the superiority of MSERS over baseline methods, providing robust insights into the role of micro-structures in session-based recommendations.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"187 \",\"pages\":\"Article 107406\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608025002850\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025002850","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

基于会话的推荐系统旨在根据短暂的匿名会话预测用户的下一次交互,由于用户行为的稀疏性和动态性,这是一项具有挑战性但至关重要的任务。现有的基于图神经网络(GNN)的方法主要关注会话图,忽略了微观结构和用户行为模式的影响。为了解决这些限制,我们提出了一个基于Motif和Supernode-Enhanced session -based的推荐系统(MSERS),该系统构建一个全局会话图,将Motif识别和编码为超级节点,并将它们重新集成到全局图中,以丰富全局图的拓扑结构,更好地表示项目依赖关系。通过采用超节点增强的门控图神经网络(GGNN), MSERS捕获了长期和潜在的项目依赖关系,显著改善了会话表示。在两个真实数据集上进行的大量实验证明了MSERS优于基线方法,为微观结构在基于会话的推荐中的作用提供了强有力的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motif and supernode-enhanced gated graph neural networks for session-based recommendation
Session-based recommendation systems aim to predict users’ next interactions based on short-lived, anonymous sessions, a challenging yet vital task due to the sparsity and dynamic nature of user behavior. Existing Graph Neural Network (GNN)-based methods primarily focus on the session graphs while overlooking the influence of micro-structures and user behavior patterns. To address these limitations, we propose a Motif and Supernode-Enhanced Session-based Recommender System (MSERS), which constructs a global session graph, identifies and encodes motifs as supernodes, and reintegrates them into the global graph to enrich its topology and better represent item dependencies. By employing supernode-enhanced Gated Graph Neural Networks (GGNN), MSERS captures both long-term and latent item dependencies, significantly improving session representations. Extensive experiments on two real-world datasets demonstrate the superiority of MSERS over baseline methods, providing robust insights into the role of micro-structures in session-based recommendations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信