Gabriella Glomp , Michael Cortelli , Briana Bernicker , Matthew Bacchetta , Rei Ukita
{"title":"控制体外膜氧合的开放式智能血泵平台","authors":"Gabriella Glomp , Michael Cortelli , Briana Bernicker , Matthew Bacchetta , Rei Ukita","doi":"10.1016/j.ohx.2025.e00644","DOIUrl":null,"url":null,"abstract":"<div><div>Clinical blood pump consoles for extracorporeal membrane oxygenation (ECMO) are poorly accessible to researchers due to their high cost. Furthermore, clinical machines are built and designed at a high level of information security, which limits their integration with third-party machines and software. These barriers hinder researchers from customizing blood pump consoles for their investigational needs, limiting innovations and advancements in the areas of blood pump automation and pulsation. To address these needs, we present on a programmable Smart Blood Pump console. This console can be assembled for under $200 and uses open-source tools including Arduino. Using this console, centrifugal blood pump heads can be operated at clinically relevant levels of flow and pressure needed in extracorporeal life support applications (>250 mmHg pressure head, >4 L/min of blood flow). Additionally, the programmable nature allows for utility beyond the standard indications of clinical extracorporeal blood pumps, including pulsatility and servo control. For future directions, this console will be further developed to accommodate a wider range of clinical pump heads. We envision that this will be an affordable, open-access platform to suit the varying needs of engineers and researchers for fostering innovations in ECMO technology.</div></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"22 ","pages":"Article e00644"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open-access smart blood pump platform for controlling extracorporeal membrane oxygenation\",\"authors\":\"Gabriella Glomp , Michael Cortelli , Briana Bernicker , Matthew Bacchetta , Rei Ukita\",\"doi\":\"10.1016/j.ohx.2025.e00644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Clinical blood pump consoles for extracorporeal membrane oxygenation (ECMO) are poorly accessible to researchers due to their high cost. Furthermore, clinical machines are built and designed at a high level of information security, which limits their integration with third-party machines and software. These barriers hinder researchers from customizing blood pump consoles for their investigational needs, limiting innovations and advancements in the areas of blood pump automation and pulsation. To address these needs, we present on a programmable Smart Blood Pump console. This console can be assembled for under $200 and uses open-source tools including Arduino. Using this console, centrifugal blood pump heads can be operated at clinically relevant levels of flow and pressure needed in extracorporeal life support applications (>250 mmHg pressure head, >4 L/min of blood flow). Additionally, the programmable nature allows for utility beyond the standard indications of clinical extracorporeal blood pumps, including pulsatility and servo control. For future directions, this console will be further developed to accommodate a wider range of clinical pump heads. We envision that this will be an affordable, open-access platform to suit the varying needs of engineers and researchers for fostering innovations in ECMO technology.</div></div>\",\"PeriodicalId\":37503,\"journal\":{\"name\":\"HardwareX\",\"volume\":\"22 \",\"pages\":\"Article e00644\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HardwareX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468067225000227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067225000227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Open-access smart blood pump platform for controlling extracorporeal membrane oxygenation
Clinical blood pump consoles for extracorporeal membrane oxygenation (ECMO) are poorly accessible to researchers due to their high cost. Furthermore, clinical machines are built and designed at a high level of information security, which limits their integration with third-party machines and software. These barriers hinder researchers from customizing blood pump consoles for their investigational needs, limiting innovations and advancements in the areas of blood pump automation and pulsation. To address these needs, we present on a programmable Smart Blood Pump console. This console can be assembled for under $200 and uses open-source tools including Arduino. Using this console, centrifugal blood pump heads can be operated at clinically relevant levels of flow and pressure needed in extracorporeal life support applications (>250 mmHg pressure head, >4 L/min of blood flow). Additionally, the programmable nature allows for utility beyond the standard indications of clinical extracorporeal blood pumps, including pulsatility and servo control. For future directions, this console will be further developed to accommodate a wider range of clinical pump heads. We envision that this will be an affordable, open-access platform to suit the varying needs of engineers and researchers for fostering innovations in ECMO technology.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.