激光增材制造中的原位多金属合金化:简要综述

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Dingmeng Xu , Wuxin Yang , Peng Cao
{"title":"激光增材制造中的原位多金属合金化:简要综述","authors":"Dingmeng Xu ,&nbsp;Wuxin Yang ,&nbsp;Peng Cao","doi":"10.1016/j.compositesb.2025.112443","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing (AM) has increasingly been employed for in situ alloying, facilitating the production of multi-metallic components, often referred to as multi-metal AM (MMAM). This approach enables the design of intricate, functional, and highly customized products with superior mechanical performance. Although the advancements in MMAM in-situ alloying have lagged behind those in single-metal AM, notable progress has been achieved in this emerging field. This concise review examines in situ alloying in laser-based AM alloys over the past decade, with a particular focus on titanium (Ti)-based MMAM and other metal systems. It systematically synthesizes current insights, addressing pre-processing preparations (e.g., powder feedstock preparation and modification), in-process adjustments (e.g., alternations in alloy chemistry and parameters optimization), and numerical simulations. These elements collectively exert a profound influence on the microstructural characteristics and mechanical performance of MMAM products.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"299 ","pages":"Article 112443"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ multi-metal alloying in laser-based additive manufacturing: A concise review\",\"authors\":\"Dingmeng Xu ,&nbsp;Wuxin Yang ,&nbsp;Peng Cao\",\"doi\":\"10.1016/j.compositesb.2025.112443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Additive manufacturing (AM) has increasingly been employed for in situ alloying, facilitating the production of multi-metallic components, often referred to as multi-metal AM (MMAM). This approach enables the design of intricate, functional, and highly customized products with superior mechanical performance. Although the advancements in MMAM in-situ alloying have lagged behind those in single-metal AM, notable progress has been achieved in this emerging field. This concise review examines in situ alloying in laser-based AM alloys over the past decade, with a particular focus on titanium (Ti)-based MMAM and other metal systems. It systematically synthesizes current insights, addressing pre-processing preparations (e.g., powder feedstock preparation and modification), in-process adjustments (e.g., alternations in alloy chemistry and parameters optimization), and numerical simulations. These elements collectively exert a profound influence on the microstructural characteristics and mechanical performance of MMAM products.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"299 \",\"pages\":\"Article 112443\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836825003440\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825003440","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

增材制造(AM)越来越多地用于原位合金化,促进了多金属部件的生产,通常称为多金属AM (MMAM)。这种方法能够设计出复杂的、功能性的、高度定制的、具有优越机械性能的产品。尽管MMAM原位合金化的进展落后于单金属AM,但在这一新兴领域取得了显着进展。本文简要回顾了过去十年中激光增材制造合金的原位合金化,特别关注钛(Ti)基MMAM和其他金属系统。它系统地综合了当前的见解,解决了预处理准备(例如,粉末原料的制备和改性),过程中的调整(例如,合金化学和参数优化的改变)和数值模拟。这些因素共同对MMAM产品的显微组织特征和力学性能产生深远的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In situ multi-metal alloying in laser-based additive manufacturing: A concise review
Additive manufacturing (AM) has increasingly been employed for in situ alloying, facilitating the production of multi-metallic components, often referred to as multi-metal AM (MMAM). This approach enables the design of intricate, functional, and highly customized products with superior mechanical performance. Although the advancements in MMAM in-situ alloying have lagged behind those in single-metal AM, notable progress has been achieved in this emerging field. This concise review examines in situ alloying in laser-based AM alloys over the past decade, with a particular focus on titanium (Ti)-based MMAM and other metal systems. It systematically synthesizes current insights, addressing pre-processing preparations (e.g., powder feedstock preparation and modification), in-process adjustments (e.g., alternations in alloy chemistry and parameters optimization), and numerical simulations. These elements collectively exert a profound influence on the microstructural characteristics and mechanical performance of MMAM products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信