温度和盐度变化对中国黑鲈下丘脑-垂体-体促轴的协调调节

IF 1.7 3区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Tianyu Zhou , Juyan Li , Junyu Chen , Wei Lu , Lingqun Zhang , Jie Cheng
{"title":"温度和盐度变化对中国黑鲈下丘脑-垂体-体促轴的协调调节","authors":"Tianyu Zhou ,&nbsp;Juyan Li ,&nbsp;Junyu Chen ,&nbsp;Wei Lu ,&nbsp;Lingqun Zhang ,&nbsp;Jie Cheng","doi":"10.1016/j.ygcen.2025.114717","DOIUrl":null,"url":null,"abstract":"<div><div>Hypothalamic–Pituitary–Somatotropic (HPS) axis contains essential endocrine factors and plays diverse roles in the growth of teleost living in dynamic aquatic environments. In this study, 43 HPS axis genes were characterized in Chinese sea bass (<em>Lateolabrax maculatus</em>), the economically important marine fish highly adaptable to a wide range of temperatures and salinities. The phylogeny, conserved domain, molecular evolution and expression of <em>L. maculatus</em> HPS axis genes revealed their evolutionary conservation, with examples of functional divergence in duplication-originated genes (<em>sst1a/1b</em>, <em>igf1ra/1rb</em>). Weighted gene co-expression network analysis (WGCNA) among <em>L. maculatus</em> tissues revealed strong co-expression of HPS genes (<em>sst</em>s, <em>igf1r</em>s, <em>igfbp</em>s) in brains than in livers and muscles, interacting with feeding (<em>cartpt</em>, <em>negr1</em>), metabolism (<em>grik3</em>, <em>drd4</em>), and growth (<em>apba1</em>) functional genes. Under temperature changes, <em>L. maculatus</em> HPS genes were more actively regulated in brains than in livers and muscles, with the hypothalamic and pituitary HPS genes mainly regulated in brains, whereas the peripheral HPS genes were regulated in livers and muscles. WGCNA revealed that HPS axis mainly interacted with stress and feeding activity in brains of <em>L. maculatus</em> under temperature stress, while it interacted with metabolism and growth activity in livers and muscles. Similar co-expression of HPS genes (<em>sstr</em>s, <em>igf1rb</em>s, <em>igfbp</em>s) were with feeding (<em>pik3r4</em>), metabolism (<em>mrps</em>, <em>ndufa12</em>) and growth (<em>sulf2</em>, <em>peli3</em>, <em>apod</em>) functions in brains, indicating that HPS axis could regulate growth through coordinated mediation of the food-intake and energy metabolism in <em>L. maculatus</em> under environmental stress. Our results provided comprehensive understanding about the <em>L. maculatus</em> HPS axis responding to environmental stimuli, which are crucial for the growth regulation and will provide important insights into fast-growing <em>L. maculatus</em> cultivation.</div></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":"366 ","pages":"Article 114717"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordinated regulation of the hypothalamic–pituitary–somatotropic axis in Chinese sea bass (Lateolabrax maculatus) under temperature and salinity changes\",\"authors\":\"Tianyu Zhou ,&nbsp;Juyan Li ,&nbsp;Junyu Chen ,&nbsp;Wei Lu ,&nbsp;Lingqun Zhang ,&nbsp;Jie Cheng\",\"doi\":\"10.1016/j.ygcen.2025.114717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hypothalamic–Pituitary–Somatotropic (HPS) axis contains essential endocrine factors and plays diverse roles in the growth of teleost living in dynamic aquatic environments. In this study, 43 HPS axis genes were characterized in Chinese sea bass (<em>Lateolabrax maculatus</em>), the economically important marine fish highly adaptable to a wide range of temperatures and salinities. The phylogeny, conserved domain, molecular evolution and expression of <em>L. maculatus</em> HPS axis genes revealed their evolutionary conservation, with examples of functional divergence in duplication-originated genes (<em>sst1a/1b</em>, <em>igf1ra/1rb</em>). Weighted gene co-expression network analysis (WGCNA) among <em>L. maculatus</em> tissues revealed strong co-expression of HPS genes (<em>sst</em>s, <em>igf1r</em>s, <em>igfbp</em>s) in brains than in livers and muscles, interacting with feeding (<em>cartpt</em>, <em>negr1</em>), metabolism (<em>grik3</em>, <em>drd4</em>), and growth (<em>apba1</em>) functional genes. Under temperature changes, <em>L. maculatus</em> HPS genes were more actively regulated in brains than in livers and muscles, with the hypothalamic and pituitary HPS genes mainly regulated in brains, whereas the peripheral HPS genes were regulated in livers and muscles. WGCNA revealed that HPS axis mainly interacted with stress and feeding activity in brains of <em>L. maculatus</em> under temperature stress, while it interacted with metabolism and growth activity in livers and muscles. Similar co-expression of HPS genes (<em>sstr</em>s, <em>igf1rb</em>s, <em>igfbp</em>s) were with feeding (<em>pik3r4</em>), metabolism (<em>mrps</em>, <em>ndufa12</em>) and growth (<em>sulf2</em>, <em>peli3</em>, <em>apod</em>) functions in brains, indicating that HPS axis could regulate growth through coordinated mediation of the food-intake and energy metabolism in <em>L. maculatus</em> under environmental stress. Our results provided comprehensive understanding about the <em>L. maculatus</em> HPS axis responding to environmental stimuli, which are crucial for the growth regulation and will provide important insights into fast-growing <em>L. maculatus</em> cultivation.</div></div>\",\"PeriodicalId\":12582,\"journal\":{\"name\":\"General and comparative endocrinology\",\"volume\":\"366 \",\"pages\":\"Article 114717\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General and comparative endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016648025000577\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General and comparative endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016648025000577","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

下丘脑-垂体-躯体促生长性(HPS)轴包含重要的内分泌因子,在动态水生环境中硬骨鱼的生长中起着多种作用。本研究对中国黑鲈(Lateolabrax maculatus)的43个HPS轴基因进行了鉴定。中国黑鲈是一种对广泛温度和盐度具有高度适应性的重要经济鱼类。以重复起源基因(sst1a/1b、igf1ra/1rb)为例,通过系统发育、保守域、分子进化和表达揭示了它们的进化保守性。加权基因共表达网络分析(WGCNA)显示,HPS基因(ssts、igf1rs、igfbps)在脑中的共表达强于肝脏和肌肉,并与摄食(cartt、negr1)、代谢(grik3、drd4)和生长(apba1)功能基因相互作用。温度变化下,斑状乳杆菌HPS基因在大脑中的调控比在肝脏和肌肉中的调控更为活跃,下丘脑和垂体HPS基因主要在大脑中调控,而外周HPS基因在肝脏和肌肉中调控。WGCNA结果显示,温度胁迫下,HPS轴主要与斑马鱼大脑的应激和摄食活动相互作用,同时与肝脏和肌肉的代谢和生长活动相互作用。HPS基因(sstrs、igf1rbs、igfbps)与取食(pik3r4)、代谢(mrps、ndufa12)和生长(sulf2、peli3、apod)功能在脑内的共表达相似,说明HPS轴在环境胁迫下可以通过协调调解食入和能量代谢来调节斑状螺旋藻的生长。本研究结果全面揭示了斑马草HPS轴对环境刺激的响应,这对斑马草生长调控至关重要,为快速生长的斑马草栽培提供了重要依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coordinated regulation of the hypothalamic–pituitary–somatotropic axis in Chinese sea bass (Lateolabrax maculatus) under temperature and salinity changes

Coordinated regulation of the hypothalamic–pituitary–somatotropic axis in Chinese sea bass (Lateolabrax maculatus) under temperature and salinity changes
Hypothalamic–Pituitary–Somatotropic (HPS) axis contains essential endocrine factors and plays diverse roles in the growth of teleost living in dynamic aquatic environments. In this study, 43 HPS axis genes were characterized in Chinese sea bass (Lateolabrax maculatus), the economically important marine fish highly adaptable to a wide range of temperatures and salinities. The phylogeny, conserved domain, molecular evolution and expression of L. maculatus HPS axis genes revealed their evolutionary conservation, with examples of functional divergence in duplication-originated genes (sst1a/1b, igf1ra/1rb). Weighted gene co-expression network analysis (WGCNA) among L. maculatus tissues revealed strong co-expression of HPS genes (ssts, igf1rs, igfbps) in brains than in livers and muscles, interacting with feeding (cartpt, negr1), metabolism (grik3, drd4), and growth (apba1) functional genes. Under temperature changes, L. maculatus HPS genes were more actively regulated in brains than in livers and muscles, with the hypothalamic and pituitary HPS genes mainly regulated in brains, whereas the peripheral HPS genes were regulated in livers and muscles. WGCNA revealed that HPS axis mainly interacted with stress and feeding activity in brains of L. maculatus under temperature stress, while it interacted with metabolism and growth activity in livers and muscles. Similar co-expression of HPS genes (sstrs, igf1rbs, igfbps) were with feeding (pik3r4), metabolism (mrps, ndufa12) and growth (sulf2, peli3, apod) functions in brains, indicating that HPS axis could regulate growth through coordinated mediation of the food-intake and energy metabolism in L. maculatus under environmental stress. Our results provided comprehensive understanding about the L. maculatus HPS axis responding to environmental stimuli, which are crucial for the growth regulation and will provide important insights into fast-growing L. maculatus cultivation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
General and comparative endocrinology
General and comparative endocrinology 医学-内分泌学与代谢
CiteScore
5.60
自引率
7.40%
发文量
120
审稿时长
2 months
期刊介绍: General and Comparative Endocrinology publishes articles concerned with the many complexities of vertebrate and invertebrate endocrine systems at the sub-molecular, molecular, cellular and organismal levels of analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信