Guoqiang Zhang , Zhiqi Wang , Diandian Shi , Guangbo Liu , Tao He , Jingli Wu , Jinzhi Zhang , Jinhu Wu
{"title":"合理设计产氢位点,实现CO2与H2O光转化为可广泛调节的合成气和高效的氢气析出","authors":"Guoqiang Zhang , Zhiqi Wang , Diandian Shi , Guangbo Liu , Tao He , Jingli Wu , Jinzhi Zhang , Jinhu Wu","doi":"10.1016/j.greenca.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><div>The photoconversion of CO<sub>2</sub> with H<sub>2</sub>O into widely tunable syngas (CO and H<sub>2</sub>) or pure H<sub>2</sub> production is regarded as a promising strategy to mitigate escalating energy shortages and climate change. Herein, anchoring the H<sub>2</sub> production sites onto the surface of CdIn<sub>2</sub>S<sub>4</sub> (CIS) with a nanoscale hollow sphere allows for the photoconversion of CO<sub>2</sub> into syngas and water splitting to H<sub>2</sub>. The CO/H<sub>2</sub> ratio can be realized in a remarkably wide range from 1:0.38 to 1:3.76. The optimized CIS/Co-PBA/NaY-5 hybrid exhibits superior photocatalytic syngas evolution up to 1458.48 μmol·g<sup>−1</sup>·h<sup>−1</sup> (H<sub>2</sub>/CO, 1152.29/306.19 μmol·g<sup>−1</sup>·h<sup>−1</sup>), and the H<sub>2</sub> evolution rate increases by 431.70% compared with CIS. The CIS/Co-PBA/NaY-5 hybrid exhibited not only superior H<sub>2</sub> evolution but also recyclability. The experimental, energy-dispersive X-ray spectroscopy, and electron spin resonance results indicate that the Co sites serve as H<sub>2</sub> production sites and promote the H<sub>2</sub> evolution reaction. In addition, the construction of a p-n heterojunction with a special micromorphology is beneficial for the separation/transfer of carriers.</div></div>","PeriodicalId":100595,"journal":{"name":"Green Carbon","volume":"3 1","pages":"Pages 11-21"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational design of H2 production sites for achieving photoconversion of CO2 with H2O into widely adjustable syngas and highly effective H2 evolution\",\"authors\":\"Guoqiang Zhang , Zhiqi Wang , Diandian Shi , Guangbo Liu , Tao He , Jingli Wu , Jinzhi Zhang , Jinhu Wu\",\"doi\":\"10.1016/j.greenca.2024.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The photoconversion of CO<sub>2</sub> with H<sub>2</sub>O into widely tunable syngas (CO and H<sub>2</sub>) or pure H<sub>2</sub> production is regarded as a promising strategy to mitigate escalating energy shortages and climate change. Herein, anchoring the H<sub>2</sub> production sites onto the surface of CdIn<sub>2</sub>S<sub>4</sub> (CIS) with a nanoscale hollow sphere allows for the photoconversion of CO<sub>2</sub> into syngas and water splitting to H<sub>2</sub>. The CO/H<sub>2</sub> ratio can be realized in a remarkably wide range from 1:0.38 to 1:3.76. The optimized CIS/Co-PBA/NaY-5 hybrid exhibits superior photocatalytic syngas evolution up to 1458.48 μmol·g<sup>−1</sup>·h<sup>−1</sup> (H<sub>2</sub>/CO, 1152.29/306.19 μmol·g<sup>−1</sup>·h<sup>−1</sup>), and the H<sub>2</sub> evolution rate increases by 431.70% compared with CIS. The CIS/Co-PBA/NaY-5 hybrid exhibited not only superior H<sub>2</sub> evolution but also recyclability. The experimental, energy-dispersive X-ray spectroscopy, and electron spin resonance results indicate that the Co sites serve as H<sub>2</sub> production sites and promote the H<sub>2</sub> evolution reaction. In addition, the construction of a p-n heterojunction with a special micromorphology is beneficial for the separation/transfer of carriers.</div></div>\",\"PeriodicalId\":100595,\"journal\":{\"name\":\"Green Carbon\",\"volume\":\"3 1\",\"pages\":\"Pages 11-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Carbon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950155524000855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Carbon","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950155524000855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
二氧化碳与水的光转化为广泛可调的合成气(CO和H2)或纯H2生产被认为是缓解日益严重的能源短缺和气候变化的一种有前途的策略。在这里,用纳米级中空球体将H2生成位点锚定在CdIn2S4 (CIS)表面上,允许CO2光转化为合成气,水分解为H2。CO/H2比可以在1:0.38到1:3.76的非常宽的范围内实现。优化后的CIS/ CO - pba /NaY-5复合物的光催化合成气析出率为1458.48 μmol·g−1·h−1 (H2/CO为1152.29/306.19 μmol·g−1·h−1),H2的析出率比CIS提高了431.70%。CIS/Co-PBA/NaY-5杂合物不仅具有较好的析氢性能,而且具有可回收性。实验、能量色散x射线光谱和电子自旋共振结果表明,Co位点作为H2生成位点,促进H2的析出反应。此外,具有特殊微形貌的p-n异质结的构建有利于载流子的分离/转移。
Rational design of H2 production sites for achieving photoconversion of CO2 with H2O into widely adjustable syngas and highly effective H2 evolution
The photoconversion of CO2 with H2O into widely tunable syngas (CO and H2) or pure H2 production is regarded as a promising strategy to mitigate escalating energy shortages and climate change. Herein, anchoring the H2 production sites onto the surface of CdIn2S4 (CIS) with a nanoscale hollow sphere allows for the photoconversion of CO2 into syngas and water splitting to H2. The CO/H2 ratio can be realized in a remarkably wide range from 1:0.38 to 1:3.76. The optimized CIS/Co-PBA/NaY-5 hybrid exhibits superior photocatalytic syngas evolution up to 1458.48 μmol·g−1·h−1 (H2/CO, 1152.29/306.19 μmol·g−1·h−1), and the H2 evolution rate increases by 431.70% compared with CIS. The CIS/Co-PBA/NaY-5 hybrid exhibited not only superior H2 evolution but also recyclability. The experimental, energy-dispersive X-ray spectroscopy, and electron spin resonance results indicate that the Co sites serve as H2 production sites and promote the H2 evolution reaction. In addition, the construction of a p-n heterojunction with a special micromorphology is beneficial for the separation/transfer of carriers.