超临界二氧化碳热力学性质的分子动力学模拟

Chenyang Sun , Chaofeng Hou , Lin Chen , Wenke Zhao , Yaning Zhang
{"title":"超临界二氧化碳热力学性质的分子动力学模拟","authors":"Chenyang Sun ,&nbsp;Chaofeng Hou ,&nbsp;Lin Chen ,&nbsp;Wenke Zhao ,&nbsp;Yaning Zhang","doi":"10.1016/j.nxener.2025.100264","DOIUrl":null,"url":null,"abstract":"<div><div>Supercritical carbon dioxide (scCO<sub>2</sub>) is widely used in various industrial and energy systems, exerting profound influences on the operational efficiencies of these devices through changing their physical properties. Molecular dynamics (MD) simulation is a powerful tool to calculate the thermodynamic properties and larger simulation scales are essential for scCO<sub>2</sub> characterized by significant local inhomogeneities. In this study, large-scale MD simulation was used to obtain the thermodynamics properties including density, isobaric heat capacity, isochoric heat capacity, volume expansion coefficient, isothermal compression coefficient, and Joule–Thomson coefficient of scCO<sub>2</sub> at temperatures of 300–900 K and pressures of 7.3773–20 MPa, with average relative errors of 3.76%, 3.93%, 3.11%, 5.76%, 7.07%, and 14.24%, respectively. The corresponding Widom lines of these thermodynamic properties were obtained, and they formed an approximately fan-shaped area called “Widom line region.” The expressions of the Widom lines were fitted with <em>R</em><sup>2</sup> of above 97.48%, well guiding the operation of scCO<sub>2</sub> systems.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"8 ","pages":"Article 100264"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic properties of supercritical carbon dioxide using molecular dynamics simulation\",\"authors\":\"Chenyang Sun ,&nbsp;Chaofeng Hou ,&nbsp;Lin Chen ,&nbsp;Wenke Zhao ,&nbsp;Yaning Zhang\",\"doi\":\"10.1016/j.nxener.2025.100264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Supercritical carbon dioxide (scCO<sub>2</sub>) is widely used in various industrial and energy systems, exerting profound influences on the operational efficiencies of these devices through changing their physical properties. Molecular dynamics (MD) simulation is a powerful tool to calculate the thermodynamic properties and larger simulation scales are essential for scCO<sub>2</sub> characterized by significant local inhomogeneities. In this study, large-scale MD simulation was used to obtain the thermodynamics properties including density, isobaric heat capacity, isochoric heat capacity, volume expansion coefficient, isothermal compression coefficient, and Joule–Thomson coefficient of scCO<sub>2</sub> at temperatures of 300–900 K and pressures of 7.3773–20 MPa, with average relative errors of 3.76%, 3.93%, 3.11%, 5.76%, 7.07%, and 14.24%, respectively. The corresponding Widom lines of these thermodynamic properties were obtained, and they formed an approximately fan-shaped area called “Widom line region.” The expressions of the Widom lines were fitted with <em>R</em><sup>2</sup> of above 97.48%, well guiding the operation of scCO<sub>2</sub> systems.</div></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":\"8 \",\"pages\":\"Article 100264\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X25000274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25000274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超临界二氧化碳(scCO2)广泛应用于各种工业和能源系统,通过改变设备的物理性质,对设备的运行效率产生深远的影响。分子动力学(MD)模拟是计算scCO2热力学性质的有力工具,更大的模拟尺度对于具有显著局部不均匀性的scCO2是必要的。本研究采用大规模MD模拟方法,获得了温度为300-900 K、压力为7.3773-20 MPa时scCO2的密度、等压热容、等时热容、体积膨胀系数、等温压缩系数和焦耳-汤姆逊系数等热力学性质,平均相对误差分别为3.76%、3.93%、3.11%、5.76%、7.07%和14.24%。得到了这些热力学性质对应的wiom线,它们形成了一个近似扇形的区域,称为“wiom线区域”。Widom谱线的拟合R2在97.48%以上,可以很好地指导scCO2系统的运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermodynamic properties of supercritical carbon dioxide using molecular dynamics simulation

Thermodynamic properties of supercritical carbon dioxide using molecular dynamics simulation
Supercritical carbon dioxide (scCO2) is widely used in various industrial and energy systems, exerting profound influences on the operational efficiencies of these devices through changing their physical properties. Molecular dynamics (MD) simulation is a powerful tool to calculate the thermodynamic properties and larger simulation scales are essential for scCO2 characterized by significant local inhomogeneities. In this study, large-scale MD simulation was used to obtain the thermodynamics properties including density, isobaric heat capacity, isochoric heat capacity, volume expansion coefficient, isothermal compression coefficient, and Joule–Thomson coefficient of scCO2 at temperatures of 300–900 K and pressures of 7.3773–20 MPa, with average relative errors of 3.76%, 3.93%, 3.11%, 5.76%, 7.07%, and 14.24%, respectively. The corresponding Widom lines of these thermodynamic properties were obtained, and they formed an approximately fan-shaped area called “Widom line region.” The expressions of the Widom lines were fitted with R2 of above 97.48%, well guiding the operation of scCO2 systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信