Haojun Lei , Nuowen Zhou , Jinhong Zhang , Ruifeng Lin , Tianyi Chen , Jiang Wu , Lei Su , Shufeng Liu , Tang Liu
{"title":"盐度是影响干旱半干旱区湖泊病毒结构、功能和生命策略的关键因素","authors":"Haojun Lei , Nuowen Zhou , Jinhong Zhang , Ruifeng Lin , Tianyi Chen , Jiang Wu , Lei Su , Shufeng Liu , Tang Liu","doi":"10.1016/j.jhazmat.2025.138075","DOIUrl":null,"url":null,"abstract":"<div><div>Salinity impacts lake microorganisms in arid and semiarid zones, affecting climate change. Viruses regulate community structure, facilitate gene transfer, and mediate nutrient cycling. However, studies on the diversity and functional differences of viruses in lakes of varying salinity are limited. Thus, we investigated metagenomic data from 20 lakes in Xinjiang Province, China, to determine viral distribution, virus-host linkage, function, and drivers in lakes of varying salinity. The results showed that salinity shaped the distribution of viral community composition, and <em>Hafunaviridae</em> was the dominant virus in high-salinity lakes. All the metagenome-assembled genomes (MAGs) belonging to Halobacteriota were predicted as hosts, with a lysogenic lifestyle predominating the life strategy, implying their potential protection in salt lakes. Moreover, some auxiliary metabolic genes (AMGs), such as <em>cpeT</em> and PTOX, were related to antioxidant and stress responses, which might help the host survive high salinity stress-induced peroxidation. Notably, the main antibiotic resistance genes (ARGs) carried by viruses, which conferred resistance to polymyxin and trimethoprim, related to the local use of veterinary antibiotics, suggesting that they are potential vehicles for the transmission of ARGs. Overall, these findings suggest that lake systems include unique viral varieties that may influence microbial ecosystems and host metabolism related to environmental adaptability.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"492 ","pages":"Article 138075"},"PeriodicalIF":11.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Salinity as a key factor affects viral structure, function, and life strategies in lakes from arid and semi-arid regions\",\"authors\":\"Haojun Lei , Nuowen Zhou , Jinhong Zhang , Ruifeng Lin , Tianyi Chen , Jiang Wu , Lei Su , Shufeng Liu , Tang Liu\",\"doi\":\"10.1016/j.jhazmat.2025.138075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Salinity impacts lake microorganisms in arid and semiarid zones, affecting climate change. Viruses regulate community structure, facilitate gene transfer, and mediate nutrient cycling. However, studies on the diversity and functional differences of viruses in lakes of varying salinity are limited. Thus, we investigated metagenomic data from 20 lakes in Xinjiang Province, China, to determine viral distribution, virus-host linkage, function, and drivers in lakes of varying salinity. The results showed that salinity shaped the distribution of viral community composition, and <em>Hafunaviridae</em> was the dominant virus in high-salinity lakes. All the metagenome-assembled genomes (MAGs) belonging to Halobacteriota were predicted as hosts, with a lysogenic lifestyle predominating the life strategy, implying their potential protection in salt lakes. Moreover, some auxiliary metabolic genes (AMGs), such as <em>cpeT</em> and PTOX, were related to antioxidant and stress responses, which might help the host survive high salinity stress-induced peroxidation. Notably, the main antibiotic resistance genes (ARGs) carried by viruses, which conferred resistance to polymyxin and trimethoprim, related to the local use of veterinary antibiotics, suggesting that they are potential vehicles for the transmission of ARGs. Overall, these findings suggest that lake systems include unique viral varieties that may influence microbial ecosystems and host metabolism related to environmental adaptability.</div></div>\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"492 \",\"pages\":\"Article 138075\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304389425009902\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425009902","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Salinity as a key factor affects viral structure, function, and life strategies in lakes from arid and semi-arid regions
Salinity impacts lake microorganisms in arid and semiarid zones, affecting climate change. Viruses regulate community structure, facilitate gene transfer, and mediate nutrient cycling. However, studies on the diversity and functional differences of viruses in lakes of varying salinity are limited. Thus, we investigated metagenomic data from 20 lakes in Xinjiang Province, China, to determine viral distribution, virus-host linkage, function, and drivers in lakes of varying salinity. The results showed that salinity shaped the distribution of viral community composition, and Hafunaviridae was the dominant virus in high-salinity lakes. All the metagenome-assembled genomes (MAGs) belonging to Halobacteriota were predicted as hosts, with a lysogenic lifestyle predominating the life strategy, implying their potential protection in salt lakes. Moreover, some auxiliary metabolic genes (AMGs), such as cpeT and PTOX, were related to antioxidant and stress responses, which might help the host survive high salinity stress-induced peroxidation. Notably, the main antibiotic resistance genes (ARGs) carried by viruses, which conferred resistance to polymyxin and trimethoprim, related to the local use of veterinary antibiotics, suggesting that they are potential vehicles for the transmission of ARGs. Overall, these findings suggest that lake systems include unique viral varieties that may influence microbial ecosystems and host metabolism related to environmental adaptability.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.