通过采用无人机技术系统释放葡萄园的盈利能力:以两家意大利酒庄为例

IF 5.4 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Serena Sofia, Martina Agosta, Antonio Asciuto, Maria Crescimanno, Antonino Galati
{"title":"通过采用无人机技术系统释放葡萄园的盈利能力:以两家意大利酒庄为例","authors":"Serena Sofia, Martina Agosta, Antonio Asciuto, Maria Crescimanno, Antonino Galati","doi":"10.1007/s11119-025-10236-2","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Precision agriculture technologies play an important role in optimising practices to increase yields and reduce costs, contributing to socio-economic progress and environmental well-being, and playing a key role in addressing climate change. Viticulture is a strategic, input-intensive agricultural sector where precision technologies can make the use of resources more efficient without compromising profitability. The aim of this study is to evaluate the profitability of implementing precision farming systems, such as unmanned aerial vehicle surveying for the production of vigour maps, compared to the conventional cultivation system in two Italian wineries.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The profitability of using precision farming tools in viticulture compared to conventional management techniques has been investigated in two Italian wineries over a four-year period, before and after the introduction of UAV technology.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The results demonstrate the usefulness and economic viability of precision agriculture technologies in viticulture. The vigour maps produced by the data collected with UAV technology allow both the identification of problems such as diseases, and consequently the planning of phytosanitary treatments, and selective grape harvesting, which allows a significant improvement in the quality of the harvested grapes.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>The results demonstrate the usefulness of precision technologies for cost-effective and sustainable vineyard management, satisfying a market segment made up of stakeholders who are increasingly sensitive to environmental issues.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"41 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unleashing profitability of vineyards through the adoption of unmanned aerial vehicles technology systems: the case of two Italian wineries\",\"authors\":\"Serena Sofia, Martina Agosta, Antonio Asciuto, Maria Crescimanno, Antonino Galati\",\"doi\":\"10.1007/s11119-025-10236-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose</h3><p>Precision agriculture technologies play an important role in optimising practices to increase yields and reduce costs, contributing to socio-economic progress and environmental well-being, and playing a key role in addressing climate change. Viticulture is a strategic, input-intensive agricultural sector where precision technologies can make the use of resources more efficient without compromising profitability. The aim of this study is to evaluate the profitability of implementing precision farming systems, such as unmanned aerial vehicle surveying for the production of vigour maps, compared to the conventional cultivation system in two Italian wineries.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>The profitability of using precision farming tools in viticulture compared to conventional management techniques has been investigated in two Italian wineries over a four-year period, before and after the introduction of UAV technology.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>The results demonstrate the usefulness and economic viability of precision agriculture technologies in viticulture. The vigour maps produced by the data collected with UAV technology allow both the identification of problems such as diseases, and consequently the planning of phytosanitary treatments, and selective grape harvesting, which allows a significant improvement in the quality of the harvested grapes.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>The results demonstrate the usefulness of precision technologies for cost-effective and sustainable vineyard management, satisfying a market segment made up of stakeholders who are increasingly sensitive to environmental issues.</p>\",\"PeriodicalId\":20423,\"journal\":{\"name\":\"Precision Agriculture\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11119-025-10236-2\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-025-10236-2","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

精准农业技术在优化实践以提高产量和降低成本、促进社会经济进步和环境福祉以及在应对气候变化方面发挥着重要作用。葡萄栽培是一个战略性的、投入密集型的农业部门,精准技术可以在不影响盈利的情况下更有效地利用资源。本研究的目的是评估实施精准农业系统的盈利能力,例如无人机测量生产活力图,与传统的种植系统在两个意大利酿酒厂进行比较。方法:与传统管理技术相比,在引入无人机技术之前和之后的四年时间里,在意大利的两个酒庄调查了在葡萄栽培中使用精准农业工具的盈利能力。结果表明了精准农业技术在葡萄栽培中的实用性和经济可行性。利用无人机技术收集的数据生成的活力图可以识别疾病等问题,从而规划植物检疫处理,并有选择性地收获葡萄,这可以显著提高收获的葡萄的质量。结论:研究结果表明,精确技术对于经济高效和可持续的葡萄园管理是有用的,满足了对环境问题越来越敏感的利益相关者组成的细分市场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unleashing profitability of vineyards through the adoption of unmanned aerial vehicles technology systems: the case of two Italian wineries

Purpose

Precision agriculture technologies play an important role in optimising practices to increase yields and reduce costs, contributing to socio-economic progress and environmental well-being, and playing a key role in addressing climate change. Viticulture is a strategic, input-intensive agricultural sector where precision technologies can make the use of resources more efficient without compromising profitability. The aim of this study is to evaluate the profitability of implementing precision farming systems, such as unmanned aerial vehicle surveying for the production of vigour maps, compared to the conventional cultivation system in two Italian wineries.

Methods

The profitability of using precision farming tools in viticulture compared to conventional management techniques has been investigated in two Italian wineries over a four-year period, before and after the introduction of UAV technology.

Results

The results demonstrate the usefulness and economic viability of precision agriculture technologies in viticulture. The vigour maps produced by the data collected with UAV technology allow both the identification of problems such as diseases, and consequently the planning of phytosanitary treatments, and selective grape harvesting, which allows a significant improvement in the quality of the harvested grapes.

Conclusion

The results demonstrate the usefulness of precision technologies for cost-effective and sustainable vineyard management, satisfying a market segment made up of stakeholders who are increasingly sensitive to environmental issues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Precision Agriculture
Precision Agriculture 农林科学-农业综合
CiteScore
12.30
自引率
8.10%
发文量
103
审稿时长
>24 weeks
期刊介绍: Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming. There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to: Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc. Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc. Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc. Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc. Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc. Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信