通过dna可编程组装的芯片集成3d纳米结构电子器件的可扩展制造

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Aaron Michelson, Lior Shani, Jason S. Kahn, Daniel C. Redeker, Won-Il Lee, Katerina R. DeOlivares, Kim Kisslinger, Nikhil Tiwale, Hanfei Yan, Ajith Pattammattel, Chang-Yong Nam, Vlad S. Pribiag, Oleg Gang
{"title":"通过dna可编程组装的芯片集成3d纳米结构电子器件的可扩展制造","authors":"Aaron Michelson,&nbsp;Lior Shani,&nbsp;Jason S. Kahn,&nbsp;Daniel C. Redeker,&nbsp;Won-Il Lee,&nbsp;Katerina R. DeOlivares,&nbsp;Kim Kisslinger,&nbsp;Nikhil Tiwale,&nbsp;Hanfei Yan,&nbsp;Ajith Pattammattel,&nbsp;Chang-Yong Nam,&nbsp;Vlad S. Pribiag,&nbsp;Oleg Gang","doi":"10.1126/sciadv.adt5620","DOIUrl":null,"url":null,"abstract":"<div >DNA-based self-assembly methods have demonstrated powerful and unique capabilities to encode nanomaterial structures through the prescribed placement of inorganic and biological nanocomponents. However, the challenge of selectively growing DNA superlattices on specific locations of surfaces and their integration with conventional nanofabrication has hindered the fabrication of three-dimensional (3D) DNA-assembled functional devices. Here, we present a scalable nanofabrication technique that combines bottom-up and top-down approaches for selective growth of 3D DNA superlattices on gold microarrays. This approach allows for the fabrication of self-assembled 3D-nanostructured electronic devices. DNA strands are bound onto the gold arrays, which anchor DNA origami frames and promote ordered framework growth on the specific areas of the surface, enabling control of the lateral placement and orientation of superlattices. DNA frameworks selectively grown on the pads are subsequently templated to nanoscale silica and tin oxide (SnO<sub>x</sub>) that follow the architecture, as confirmed by structural and chemical characterizations. The fabricated SnO<sub>x</sub> superlattices are integrated into devices that demonstrate photocurrent response.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 13","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt5620","citationCount":"0","resultStr":"{\"title\":\"Scalable fabrication of Chip-integrated 3D-nanostructured electronic devices via DNA-programmable assembly\",\"authors\":\"Aaron Michelson,&nbsp;Lior Shani,&nbsp;Jason S. Kahn,&nbsp;Daniel C. Redeker,&nbsp;Won-Il Lee,&nbsp;Katerina R. DeOlivares,&nbsp;Kim Kisslinger,&nbsp;Nikhil Tiwale,&nbsp;Hanfei Yan,&nbsp;Ajith Pattammattel,&nbsp;Chang-Yong Nam,&nbsp;Vlad S. Pribiag,&nbsp;Oleg Gang\",\"doi\":\"10.1126/sciadv.adt5620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >DNA-based self-assembly methods have demonstrated powerful and unique capabilities to encode nanomaterial structures through the prescribed placement of inorganic and biological nanocomponents. However, the challenge of selectively growing DNA superlattices on specific locations of surfaces and their integration with conventional nanofabrication has hindered the fabrication of three-dimensional (3D) DNA-assembled functional devices. Here, we present a scalable nanofabrication technique that combines bottom-up and top-down approaches for selective growth of 3D DNA superlattices on gold microarrays. This approach allows for the fabrication of self-assembled 3D-nanostructured electronic devices. DNA strands are bound onto the gold arrays, which anchor DNA origami frames and promote ordered framework growth on the specific areas of the surface, enabling control of the lateral placement and orientation of superlattices. DNA frameworks selectively grown on the pads are subsequently templated to nanoscale silica and tin oxide (SnO<sub>x</sub>) that follow the architecture, as confirmed by structural and chemical characterizations. The fabricated SnO<sub>x</sub> superlattices are integrated into devices that demonstrate photocurrent response.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 13\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adt5620\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adt5620\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt5620","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基于dna的自组装方法已经显示出强大而独特的能力,可以通过规定的无机和生物纳米组件的放置来编码纳米结构。然而,在表面的特定位置选择性地生长DNA超晶格及其与传统纳米制造的集成的挑战阻碍了三维(3D) DNA组装功能器件的制造。在这里,我们提出了一种可扩展的纳米制造技术,该技术结合了自下而上和自上而下的方法,用于在金微阵列上选择性地生长3D DNA超晶格。这种方法允许制造自组装的3d纳米结构电子器件。DNA链被绑定到金阵列上,金阵列锚定了DNA折纸框架,并促进了表面特定区域的有序框架生长,从而能够控制超晶格的横向位置和方向。通过结构和化学表征证实,在衬垫上选择性生长的DNA框架随后被模板化为纳米级二氧化硅和氧化锡(SnO x)。制备的snox超晶格被集成到器件中,显示出光电流响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Scalable fabrication of Chip-integrated 3D-nanostructured electronic devices via DNA-programmable assembly

Scalable fabrication of Chip-integrated 3D-nanostructured electronic devices via DNA-programmable assembly
DNA-based self-assembly methods have demonstrated powerful and unique capabilities to encode nanomaterial structures through the prescribed placement of inorganic and biological nanocomponents. However, the challenge of selectively growing DNA superlattices on specific locations of surfaces and their integration with conventional nanofabrication has hindered the fabrication of three-dimensional (3D) DNA-assembled functional devices. Here, we present a scalable nanofabrication technique that combines bottom-up and top-down approaches for selective growth of 3D DNA superlattices on gold microarrays. This approach allows for the fabrication of self-assembled 3D-nanostructured electronic devices. DNA strands are bound onto the gold arrays, which anchor DNA origami frames and promote ordered framework growth on the specific areas of the surface, enabling control of the lateral placement and orientation of superlattices. DNA frameworks selectively grown on the pads are subsequently templated to nanoscale silica and tin oxide (SnOx) that follow the architecture, as confirmed by structural and chemical characterizations. The fabricated SnOx superlattices are integrated into devices that demonstrate photocurrent response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信