Jinwook Rhyu, Joachim Schaeffer, Michael L. Li, Xiao Cui, William C. Chueh, Martin Z. Bazant, Richard D. Braatz
{"title":"锂离子电池成形过程循环寿命预测系统特征设计","authors":"Jinwook Rhyu, Joachim Schaeffer, Michael L. Li, Xiao Cui, William C. Chueh, Martin Z. Bazant, Richard D. Braatz","doi":"10.1016/j.joule.2025.101884","DOIUrl":null,"url":null,"abstract":"Optimization of the formation step in lithium-ion battery manufacturing is challenging due to limited physical understanding of solid-electrolyte interphase formation and the long testing time (∼100 days) for cells to reach the end of life. We propose a systematic feature-design framework that requires minimal domain knowledge for accurate cycle life prediction during formation. By only using two simple <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">Q</mi><mrow is=\"true\"><mo is=\"true\">(</mo><mi is=\"true\">V</mi><mo is=\"true\">)</mo></mrow></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -846.5 2506.7 1196.3\" width=\"5.822ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-51\"></use></g><g is=\"true\" transform=\"translate(958,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-28\"></use></g><g is=\"true\" transform=\"translate(389,0)\"><use xlink:href=\"#MJMATHI-56\"></use></g><g is=\"true\" transform=\"translate(1159,0)\"><use xlink:href=\"#MJMAIN-29\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">Q</mi><mrow is=\"true\"><mo is=\"true\">(</mo><mi is=\"true\">V</mi><mo is=\"true\">)</mo></mrow></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">Q</mi><mrow is=\"true\"><mo is=\"true\">(</mo><mi is=\"true\">V</mi><mo is=\"true\">)</mo></mrow></mrow></math></script></span> features designed from our framework, extracted from formation data without any additional diagnostic cycles, we achieved an average of 9.87% error for cycle life prediction. The physics-based investigation guided by the two designed features shows that the voltage ranges identified by our framework capture the effects of formation temperature and microscopic-particle resistance heterogeneity. By designing highly predictive, robust, and interpretable features, our approach can accelerate industrial battery formation research, leveraging the interplay between data-driven feature design and mechanistic understanding.","PeriodicalId":343,"journal":{"name":"Joule","volume":"72 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic feature design for cycle life prediction of lithium-ion batteries during formation\",\"authors\":\"Jinwook Rhyu, Joachim Schaeffer, Michael L. Li, Xiao Cui, William C. Chueh, Martin Z. Bazant, Richard D. Braatz\",\"doi\":\"10.1016/j.joule.2025.101884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimization of the formation step in lithium-ion battery manufacturing is challenging due to limited physical understanding of solid-electrolyte interphase formation and the long testing time (∼100 days) for cells to reach the end of life. We propose a systematic feature-design framework that requires minimal domain knowledge for accurate cycle life prediction during formation. By only using two simple <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">Q</mi><mrow is=\\\"true\\\"><mo is=\\\"true\\\">(</mo><mi is=\\\"true\\\">V</mi><mo is=\\\"true\\\">)</mo></mrow></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.779ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -846.5 2506.7 1196.3\\\" width=\\\"5.822ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-51\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(958,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-28\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(389,0)\\\"><use xlink:href=\\\"#MJMATHI-56\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1159,0)\\\"><use xlink:href=\\\"#MJMAIN-29\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">Q</mi><mrow is=\\\"true\\\"><mo is=\\\"true\\\">(</mo><mi is=\\\"true\\\">V</mi><mo is=\\\"true\\\">)</mo></mrow></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">Q</mi><mrow is=\\\"true\\\"><mo is=\\\"true\\\">(</mo><mi is=\\\"true\\\">V</mi><mo is=\\\"true\\\">)</mo></mrow></mrow></math></script></span> features designed from our framework, extracted from formation data without any additional diagnostic cycles, we achieved an average of 9.87% error for cycle life prediction. The physics-based investigation guided by the two designed features shows that the voltage ranges identified by our framework capture the effects of formation temperature and microscopic-particle resistance heterogeneity. By designing highly predictive, robust, and interpretable features, our approach can accelerate industrial battery formation research, leveraging the interplay between data-driven feature design and mechanistic understanding.\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.joule.2025.101884\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.101884","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Systematic feature design for cycle life prediction of lithium-ion batteries during formation
Optimization of the formation step in lithium-ion battery manufacturing is challenging due to limited physical understanding of solid-electrolyte interphase formation and the long testing time (∼100 days) for cells to reach the end of life. We propose a systematic feature-design framework that requires minimal domain knowledge for accurate cycle life prediction during formation. By only using two simple features designed from our framework, extracted from formation data without any additional diagnostic cycles, we achieved an average of 9.87% error for cycle life prediction. The physics-based investigation guided by the two designed features shows that the voltage ranges identified by our framework capture the effects of formation temperature and microscopic-particle resistance heterogeneity. By designing highly predictive, robust, and interpretable features, our approach can accelerate industrial battery formation research, leveraging the interplay between data-driven feature design and mechanistic understanding.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.