受自然启发的分层建筑材料,二氧化碳排放量低,性能优越

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jinyang Jiang, Han Wang, Junlin Lin, Fengjuan Wang, Zhiyong Liu, Liguo Wang, Zongjin Li, Yali Li, Yunjian Li, Zeyu Lu
{"title":"受自然启发的分层建筑材料,二氧化碳排放量低,性能优越","authors":"Jinyang Jiang, Han Wang, Junlin Lin, Fengjuan Wang, Zhiyong Liu, Liguo Wang, Zongjin Li, Yali Li, Yunjian Li, Zeyu Lu","doi":"10.1038/s41467-025-58339-8","DOIUrl":null,"url":null,"abstract":"<p>Conventional cement-based materials are faced with significant challenges, including large carbon emissions, high density, and quasi-brittleness. Here, inspired by hierarchical porous structures existing in nature, we develop a low carbon, lightweight, strong and tough cement-based material (LLST), which is obtained by a rapid gelation of hydrogel as skeleton and subsequent deposition of cement hydrates as a skin. As a result, the LLST exhibits hierarchical structure consisting of sponge-like micropores (1 ~ 50 μm) and nanopores (5 ~ 100 nm), without detrimental macropores that compromise light weight, strength, and toughness. Compared with the normal cement paste, LLST displays a 54% reduction in density, 145% and 1365% improvement in specific compressive strength and fracture energy, with only 51% carbon emission. These properties are further investigated with machine learning force field molecular dynamics along with well-tempered metadynamics simulations, indicating that strong chemical bonding is generated at the atomic level between functional groups in the hydrogel and Ca ion released from cement hydration. These findings not only demonstrate a strategy for developing lightweight building materials with low-carbon emission and remarkable mechanical properties, but also provide valuable insights for realizing the coexistence of light weight, strength and toughness by tailoring the hierarchical pore structure.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"21 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nature-inspired hierarchical building materials with low CO2 emission and superior performance\",\"authors\":\"Jinyang Jiang, Han Wang, Junlin Lin, Fengjuan Wang, Zhiyong Liu, Liguo Wang, Zongjin Li, Yali Li, Yunjian Li, Zeyu Lu\",\"doi\":\"10.1038/s41467-025-58339-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conventional cement-based materials are faced with significant challenges, including large carbon emissions, high density, and quasi-brittleness. Here, inspired by hierarchical porous structures existing in nature, we develop a low carbon, lightweight, strong and tough cement-based material (LLST), which is obtained by a rapid gelation of hydrogel as skeleton and subsequent deposition of cement hydrates as a skin. As a result, the LLST exhibits hierarchical structure consisting of sponge-like micropores (1 ~ 50 μm) and nanopores (5 ~ 100 nm), without detrimental macropores that compromise light weight, strength, and toughness. Compared with the normal cement paste, LLST displays a 54% reduction in density, 145% and 1365% improvement in specific compressive strength and fracture energy, with only 51% carbon emission. These properties are further investigated with machine learning force field molecular dynamics along with well-tempered metadynamics simulations, indicating that strong chemical bonding is generated at the atomic level between functional groups in the hydrogel and Ca ion released from cement hydration. These findings not only demonstrate a strategy for developing lightweight building materials with low-carbon emission and remarkable mechanical properties, but also provide valuable insights for realizing the coexistence of light weight, strength and toughness by tailoring the hierarchical pore structure.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58339-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58339-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

传统的水泥基材料面临着巨大的挑战,包括大量的碳排放、高密度和准脆性。在这里,受自然界中存在的分层多孔结构的启发,我们开发了一种低碳、轻质、强韧的水泥基材料(LLST),该材料是通过水凝胶的快速凝胶化作为骨架,随后沉积水泥水合物作为表皮而获得的。因此,LLST呈现出由海绵状微孔(1 ~ 50 μm)和纳米孔(5 ~ 100 nm)组成的层次化结构,没有影响轻质、强度和韧性的有害大孔。与普通水泥浆体相比,LLST密度降低54%,比抗压强度和断裂能分别提高145%和1365%,碳排放量仅为51%。这些特性通过机器学习力场分子动力学和调节良好的元动力学模拟进行了进一步研究,表明水凝胶中的官能团与水泥水化释放的钙离子之间在原子水平上产生了强化学键。这些发现不仅为开发低碳排放和卓越力学性能的轻质建筑材料提供了策略,而且为通过定制分层孔隙结构实现轻、强、韧共存提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nature-inspired hierarchical building materials with low CO2 emission and superior performance

Nature-inspired hierarchical building materials with low CO2 emission and superior performance

Conventional cement-based materials are faced with significant challenges, including large carbon emissions, high density, and quasi-brittleness. Here, inspired by hierarchical porous structures existing in nature, we develop a low carbon, lightweight, strong and tough cement-based material (LLST), which is obtained by a rapid gelation of hydrogel as skeleton and subsequent deposition of cement hydrates as a skin. As a result, the LLST exhibits hierarchical structure consisting of sponge-like micropores (1 ~ 50 μm) and nanopores (5 ~ 100 nm), without detrimental macropores that compromise light weight, strength, and toughness. Compared with the normal cement paste, LLST displays a 54% reduction in density, 145% and 1365% improvement in specific compressive strength and fracture energy, with only 51% carbon emission. These properties are further investigated with machine learning force field molecular dynamics along with well-tempered metadynamics simulations, indicating that strong chemical bonding is generated at the atomic level between functional groups in the hydrogel and Ca ion released from cement hydration. These findings not only demonstrate a strategy for developing lightweight building materials with low-carbon emission and remarkable mechanical properties, but also provide valuable insights for realizing the coexistence of light weight, strength and toughness by tailoring the hierarchical pore structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信