Eyal Weinreb, John M. McBride, Marta Siek, Jacques Rougemont, Renaud Renault, Yoav Peleg, Tamar Unger, Shira Albeck, Yael Fridmann-Sirkis, Sofya Lushchekina, Joel L. Sussman, Bartosz A. Grzybowski, Giovanni Zocchi, Jean-Pierre Eckmann, Elisha Moses, Tsvi Tlusty
{"title":"酶是粘弹性催化机器","authors":"Eyal Weinreb, John M. McBride, Marta Siek, Jacques Rougemont, Renaud Renault, Yoav Peleg, Tamar Unger, Shira Albeck, Yael Fridmann-Sirkis, Sofya Lushchekina, Joel L. Sussman, Bartosz A. Grzybowski, Giovanni Zocchi, Jean-Pierre Eckmann, Elisha Moses, Tsvi Tlusty","doi":"10.1038/s41567-025-02825-9","DOIUrl":null,"url":null,"abstract":"<p>The catalytic cycle involves internal motions and conformational changes that allow enzymes to specifically bind to substrates, reach the transition state and release the product. Such mechanical interactions and motions are often long ranged so that mutations of residues far from the active site can modulate the enzymatic cycle. In particular, regions that undergo high strain during the cycle give mechanical flexibility to the protein, which is crucial for protein motion. Here we directly probe the connection between strain, flexibility and functionality, and we quantify how distant high-strain residues modulate the catalytic function via long-ranged force transduction. We measure the rheological and catalytic properties of wild-type guanylate kinase and of its mutants with a single amino acid replacement in low-/high-strain regions and in binding/non-binding regions. The rheological response of the protein to an applied oscillating force fits a continuum model of a viscoelastic material whose mechanical properties are significantly affected by mutations in high-strain regions, as opposed to mutations in control regions. Furthermore, catalytic activity assays show that mutations in high-strain or binding regions tend to reduce activity, whereas mutations in low-strain, non-binding regions are neutral. These findings suggest that enzymes act as viscoelastic catalytic machines with sequence-encoded mechanical specifications.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"30 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enzymes as viscoelastic catalytic machines\",\"authors\":\"Eyal Weinreb, John M. McBride, Marta Siek, Jacques Rougemont, Renaud Renault, Yoav Peleg, Tamar Unger, Shira Albeck, Yael Fridmann-Sirkis, Sofya Lushchekina, Joel L. Sussman, Bartosz A. Grzybowski, Giovanni Zocchi, Jean-Pierre Eckmann, Elisha Moses, Tsvi Tlusty\",\"doi\":\"10.1038/s41567-025-02825-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The catalytic cycle involves internal motions and conformational changes that allow enzymes to specifically bind to substrates, reach the transition state and release the product. Such mechanical interactions and motions are often long ranged so that mutations of residues far from the active site can modulate the enzymatic cycle. In particular, regions that undergo high strain during the cycle give mechanical flexibility to the protein, which is crucial for protein motion. Here we directly probe the connection between strain, flexibility and functionality, and we quantify how distant high-strain residues modulate the catalytic function via long-ranged force transduction. We measure the rheological and catalytic properties of wild-type guanylate kinase and of its mutants with a single amino acid replacement in low-/high-strain regions and in binding/non-binding regions. The rheological response of the protein to an applied oscillating force fits a continuum model of a viscoelastic material whose mechanical properties are significantly affected by mutations in high-strain regions, as opposed to mutations in control regions. Furthermore, catalytic activity assays show that mutations in high-strain or binding regions tend to reduce activity, whereas mutations in low-strain, non-binding regions are neutral. These findings suggest that enzymes act as viscoelastic catalytic machines with sequence-encoded mechanical specifications.</p>\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41567-025-02825-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02825-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The catalytic cycle involves internal motions and conformational changes that allow enzymes to specifically bind to substrates, reach the transition state and release the product. Such mechanical interactions and motions are often long ranged so that mutations of residues far from the active site can modulate the enzymatic cycle. In particular, regions that undergo high strain during the cycle give mechanical flexibility to the protein, which is crucial for protein motion. Here we directly probe the connection between strain, flexibility and functionality, and we quantify how distant high-strain residues modulate the catalytic function via long-ranged force transduction. We measure the rheological and catalytic properties of wild-type guanylate kinase and of its mutants with a single amino acid replacement in low-/high-strain regions and in binding/non-binding regions. The rheological response of the protein to an applied oscillating force fits a continuum model of a viscoelastic material whose mechanical properties are significantly affected by mutations in high-strain regions, as opposed to mutations in control regions. Furthermore, catalytic activity assays show that mutations in high-strain or binding regions tend to reduce activity, whereas mutations in low-strain, non-binding regions are neutral. These findings suggest that enzymes act as viscoelastic catalytic machines with sequence-encoded mechanical specifications.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.