Qiannan Zhu, Ke Yang, Likun Chen, Xufei An, Shaoke Guo, Yuhang Li, Yuetao Ma, Yidan Cao, Ming Liu, Yan-Bing He
{"title":"激活复合电解质中的界面离子交换以实现高倍率和长循环固态锂电池","authors":"Qiannan Zhu, Ke Yang, Likun Chen, Xufei An, Shaoke Guo, Yuhang Li, Yuetao Ma, Yidan Cao, Ming Liu, Yan-Bing He","doi":"10.1002/anie.202425221","DOIUrl":null,"url":null,"abstract":"<p>Composite solid electrolytes (CSEs) are promising candidates for solid-state lithium metal batteries. However, the poor cross-phase Li<sup>+</sup> transport restricts the rate performance and cycle life of the batteries. Herein, we revealed the Li<sup>+</sup> percolation behavior in poly(vinylidene fluoride) (PVDF)-based CSEs with Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> filler. The de-coordination barrier from Li<sup>+</sup> clusters determines interfacial Li<sup>+</sup> transport capability. We then employed a designed <i>N</i>-methyl-2,2,2-trifluoroacetamide (NMTFA) ligand to lower the de-coordination energy and activate interfacial Li<sup>+</sup> exchange. The ionic conductivity is therefore increased from 3.32 × 10<sup>−4</sup> to 7.30 × 10<sup>−4</sup> S cm<sup>−1</sup>. By tracking the <sup>6</sup>Li and <sup>7</sup>Li substitution process, it was identified that the proportion of interfacial Li<sup>+</sup> transport increases from 11% to 26%. The NMTFA also contributes to the formation of inorganic-rich interphases with electrodes. As a result, the Li||LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> solid-state batteries exhibit ultra-long lifespans of 2400, 3000, and 10 000 times at 2, 5, and 10C, respectively, as well as achieve 1000 cycles at 50 °C and 300 cycles at −30 °C. This work highlights the critical role of interfacial Li<sup>+</sup> transport for the CSEs with “polymer-Li<sup>+</sup> clusters-filler” configuration to realize high-rate and long-cycling solid-state lithium batteries.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 23","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activating Interfacial Ion Exchange in Composite Electrolytes to Realize High-Rate and Long-Cycling Solid-State Lithium Batteries\",\"authors\":\"Qiannan Zhu, Ke Yang, Likun Chen, Xufei An, Shaoke Guo, Yuhang Li, Yuetao Ma, Yidan Cao, Ming Liu, Yan-Bing He\",\"doi\":\"10.1002/anie.202425221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Composite solid electrolytes (CSEs) are promising candidates for solid-state lithium metal batteries. However, the poor cross-phase Li<sup>+</sup> transport restricts the rate performance and cycle life of the batteries. Herein, we revealed the Li<sup>+</sup> percolation behavior in poly(vinylidene fluoride) (PVDF)-based CSEs with Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> filler. The de-coordination barrier from Li<sup>+</sup> clusters determines interfacial Li<sup>+</sup> transport capability. We then employed a designed <i>N</i>-methyl-2,2,2-trifluoroacetamide (NMTFA) ligand to lower the de-coordination energy and activate interfacial Li<sup>+</sup> exchange. The ionic conductivity is therefore increased from 3.32 × 10<sup>−4</sup> to 7.30 × 10<sup>−4</sup> S cm<sup>−1</sup>. By tracking the <sup>6</sup>Li and <sup>7</sup>Li substitution process, it was identified that the proportion of interfacial Li<sup>+</sup> transport increases from 11% to 26%. The NMTFA also contributes to the formation of inorganic-rich interphases with electrodes. As a result, the Li||LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> solid-state batteries exhibit ultra-long lifespans of 2400, 3000, and 10 000 times at 2, 5, and 10C, respectively, as well as achieve 1000 cycles at 50 °C and 300 cycles at −30 °C. This work highlights the critical role of interfacial Li<sup>+</sup> transport for the CSEs with “polymer-Li<sup>+</sup> clusters-filler” configuration to realize high-rate and long-cycling solid-state lithium batteries.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 23\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202425221\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202425221","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
复合固体电解质(cse)是固态锂金属电池的有前途的候选者。然而,不良的跨相Li+传输限制了电池的倍率性能和循环寿命。本文研究了Li+在以Li6.4La3Zr1.4Ta0.6O12为填料的聚偏氟乙烯(PVDF)基cse中的渗透行为。Li+团簇的脱配势垒决定了界面Li+传输能力。然后,我们采用设计的N‐甲基‐2,2,2‐三氟乙酰胺(NMTFA)配体来降低脱配能并激活界面Li+交换,从而使离子电导率从3.32×10‐4提高到7.30×10‐4 S cm‐1。通过跟踪6Li和7Li取代过程,发现界面Li+输运比例从11%增加到26%。NMTFA还有助于与电极形成富无机界面相。因此,Li||LiNi0.8Co0.1Mn0.1O2固态电池在2℃、5℃和10℃下分别表现出2400次、3000次和10000次的超长寿命,在50℃和- 30℃下分别达到1000次和300次循环。这项工作强调了具有“聚合物-锂+簇-填料”配置的锂离子电池的界面传输对实现高倍率和长循环固态锂电池的关键作用。
Activating Interfacial Ion Exchange in Composite Electrolytes to Realize High-Rate and Long-Cycling Solid-State Lithium Batteries
Composite solid electrolytes (CSEs) are promising candidates for solid-state lithium metal batteries. However, the poor cross-phase Li+ transport restricts the rate performance and cycle life of the batteries. Herein, we revealed the Li+ percolation behavior in poly(vinylidene fluoride) (PVDF)-based CSEs with Li6.4La3Zr1.4Ta0.6O12 filler. The de-coordination barrier from Li+ clusters determines interfacial Li+ transport capability. We then employed a designed N-methyl-2,2,2-trifluoroacetamide (NMTFA) ligand to lower the de-coordination energy and activate interfacial Li+ exchange. The ionic conductivity is therefore increased from 3.32 × 10−4 to 7.30 × 10−4 S cm−1. By tracking the 6Li and 7Li substitution process, it was identified that the proportion of interfacial Li+ transport increases from 11% to 26%. The NMTFA also contributes to the formation of inorganic-rich interphases with electrodes. As a result, the Li||LiNi0.8Co0.1Mn0.1O2 solid-state batteries exhibit ultra-long lifespans of 2400, 3000, and 10 000 times at 2, 5, and 10C, respectively, as well as achieve 1000 cycles at 50 °C and 300 cycles at −30 °C. This work highlights the critical role of interfacial Li+ transport for the CSEs with “polymer-Li+ clusters-filler” configuration to realize high-rate and long-cycling solid-state lithium batteries.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.