甘氨酸电合成中“易活化分子”的加氢

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaowen Sun, Egon Campos dos Santos, Mingtao Li, Yujie Shi, Kanglei Pang, Miao Zhang, Jiayin Yuan, Hong Liu, Xiaowen Yu
{"title":"甘氨酸电合成中“易活化分子”的加氢","authors":"Xiaowen Sun,&nbsp;Egon Campos dos Santos,&nbsp;Mingtao Li,&nbsp;Yujie Shi,&nbsp;Kanglei Pang,&nbsp;Miao Zhang,&nbsp;Jiayin Yuan,&nbsp;Hong Liu,&nbsp;Xiaowen Yu","doi":"10.1002/anie.202505675","DOIUrl":null,"url":null,"abstract":"<p>The hydrogenation of glyoxylate oxime is the energy-intensive step in glycine electrosynthesis. To date, there has been a lack of rational guidance for catalyst design specific to this step, and the unique characteristics of the oxime molecule have often been overlooked. In this study, we initiate a theoretical framework to elucidate the fundamental mechanisms of glycine electrosynthesis across typical transition metals. By comprehensively analyzing the competitive reactions, proton-coupled electron transfer processes, and desorption steps, we identify the unique role of the glyoxylate oxime as a “readily activated molecule”. This inherent property positions Ag, featuring weak adsorption characteristics, as the “dream” catalyst for glycine electrosynthesis. Notably, a record-low onset potential of −0.09 V versus RHE and an impressive glycine production rate of 1327 µmol h<sup>−1</sup> are achieved when using an ultralight Ag foam electrode. This process enables gram-scale glycine production within 20 h and can be widely adapted for synthesizing diverse amino acids. Our findings underscore the vital significance of considering the inherent characteristics of reaction intermediates in catalyst design.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 23","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202505675","citationCount":"0","resultStr":"{\"title\":\"Hydrogenation of “Readily Activated Molecule” for Glycine Electrosynthesis\",\"authors\":\"Xiaowen Sun,&nbsp;Egon Campos dos Santos,&nbsp;Mingtao Li,&nbsp;Yujie Shi,&nbsp;Kanglei Pang,&nbsp;Miao Zhang,&nbsp;Jiayin Yuan,&nbsp;Hong Liu,&nbsp;Xiaowen Yu\",\"doi\":\"10.1002/anie.202505675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The hydrogenation of glyoxylate oxime is the energy-intensive step in glycine electrosynthesis. To date, there has been a lack of rational guidance for catalyst design specific to this step, and the unique characteristics of the oxime molecule have often been overlooked. In this study, we initiate a theoretical framework to elucidate the fundamental mechanisms of glycine electrosynthesis across typical transition metals. By comprehensively analyzing the competitive reactions, proton-coupled electron transfer processes, and desorption steps, we identify the unique role of the glyoxylate oxime as a “readily activated molecule”. This inherent property positions Ag, featuring weak adsorption characteristics, as the “dream” catalyst for glycine electrosynthesis. Notably, a record-low onset potential of −0.09 V versus RHE and an impressive glycine production rate of 1327 µmol h<sup>−1</sup> are achieved when using an ultralight Ag foam electrode. This process enables gram-scale glycine production within 20 h and can be widely adapted for synthesizing diverse amino acids. Our findings underscore the vital significance of considering the inherent characteristics of reaction intermediates in catalyst design.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 23\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202505675\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202505675\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202505675","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

乙醛酸肟的氢化反应是甘氨酸电合成过程中能量密集的步骤。迄今为止,对于这一步骤的催化剂设计一直缺乏合理的指导,并且肟分子的独特特性经常被忽视。在这项研究中,我们提出了一个理论框架来阐明跨典型过渡金属的甘氨酸电合成的基本机制。通过综合分析竞争反应、质子耦合电子转移过程和解吸步骤,我们确定了乙醛酸肟作为“易活化分子”的独特作用。Ag具有较弱的吸附特性,这使得Ag成为甘氨酸电合成的“理想”催化剂。值得注意的是,当使用超轻Ag泡沫电极时,与RHE相比,达到了创纪录的-0.09 V的起始电位和令人印象深刻的1327 μmol h-1的甘氨酸产率。该工艺可在20小时内生产克级甘氨酸,并可广泛适用于合成各种氨基酸。我们的发现强调了在催化剂设计中考虑反应中间体固有特性的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrogenation of “Readily Activated Molecule” for Glycine Electrosynthesis

Hydrogenation of “Readily Activated Molecule” for Glycine Electrosynthesis

The hydrogenation of glyoxylate oxime is the energy-intensive step in glycine electrosynthesis. To date, there has been a lack of rational guidance for catalyst design specific to this step, and the unique characteristics of the oxime molecule have often been overlooked. In this study, we initiate a theoretical framework to elucidate the fundamental mechanisms of glycine electrosynthesis across typical transition metals. By comprehensively analyzing the competitive reactions, proton-coupled electron transfer processes, and desorption steps, we identify the unique role of the glyoxylate oxime as a “readily activated molecule”. This inherent property positions Ag, featuring weak adsorption characteristics, as the “dream” catalyst for glycine electrosynthesis. Notably, a record-low onset potential of −0.09 V versus RHE and an impressive glycine production rate of 1327 µmol h−1 are achieved when using an ultralight Ag foam electrode. This process enables gram-scale glycine production within 20 h and can be widely adapted for synthesizing diverse amino acids. Our findings underscore the vital significance of considering the inherent characteristics of reaction intermediates in catalyst design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信