{"title":"它是一只蝙蝠还是一只雄性?一只雌蛾(斑蛾,鳞翅目:斑蛾科:斑蛾科)利用其声音信号进行防御或求偶。","authors":"Frank Coro","doi":"10.1007/s00359-025-01739-4","DOIUrl":null,"url":null,"abstract":"<p><p>Courtship behavior in the polka-dot wasp moth Syntomieda epilais is the most elaborate acoustic communication system known in the Erebidae. Both males and females must emit their acoustic signals for successful mating under natural conditions in the presence of insectivorous echolocating bats. I stimulated ninety-two females S. epilais during their courtship period (between 2:30 and 6:30 am) with playback of conspecific male and female signals and of the Mexican free-tailed bat (Tadarida brasiliensis) attack sequence. I recorded the acoustic responses of the tested females. On the third night after eclosion, at the initiation of courtship behavior, females discriminate among these three types of acoustic trains, responding preferentially to conspecific male signals. In contrast, during the first two nights after eclosion, they respond strongly to the bat attack sequence but not to conspecific male signals. I also demonstrate that after mating (six nights after eclosion) female moths stop responding to conspecific male signals, while continuing to respond to the bat attack pulse-train. These, as well as other novel observations suggest that these female moths can modulate their acoustic signals according to the stimulating conditions for defense against bats or courtship, by varying their response thresholds and latencies.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"357-374"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is it a bat or a male? A female moth (Syntomeida epilais, Lepidoptera: Erebidae: Arctiinae) adapts its acoustic signals for defense or courtship.\",\"authors\":\"Frank Coro\",\"doi\":\"10.1007/s00359-025-01739-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Courtship behavior in the polka-dot wasp moth Syntomieda epilais is the most elaborate acoustic communication system known in the Erebidae. Both males and females must emit their acoustic signals for successful mating under natural conditions in the presence of insectivorous echolocating bats. I stimulated ninety-two females S. epilais during their courtship period (between 2:30 and 6:30 am) with playback of conspecific male and female signals and of the Mexican free-tailed bat (Tadarida brasiliensis) attack sequence. I recorded the acoustic responses of the tested females. On the third night after eclosion, at the initiation of courtship behavior, females discriminate among these three types of acoustic trains, responding preferentially to conspecific male signals. In contrast, during the first two nights after eclosion, they respond strongly to the bat attack sequence but not to conspecific male signals. I also demonstrate that after mating (six nights after eclosion) female moths stop responding to conspecific male signals, while continuing to respond to the bat attack pulse-train. These, as well as other novel observations suggest that these female moths can modulate their acoustic signals according to the stimulating conditions for defense against bats or courtship, by varying their response thresholds and latencies.</p>\",\"PeriodicalId\":54862,\"journal\":{\"name\":\"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology\",\"volume\":\" \",\"pages\":\"357-374\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s00359-025-01739-4\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00359-025-01739-4","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Is it a bat or a male? A female moth (Syntomeida epilais, Lepidoptera: Erebidae: Arctiinae) adapts its acoustic signals for defense or courtship.
Courtship behavior in the polka-dot wasp moth Syntomieda epilais is the most elaborate acoustic communication system known in the Erebidae. Both males and females must emit their acoustic signals for successful mating under natural conditions in the presence of insectivorous echolocating bats. I stimulated ninety-two females S. epilais during their courtship period (between 2:30 and 6:30 am) with playback of conspecific male and female signals and of the Mexican free-tailed bat (Tadarida brasiliensis) attack sequence. I recorded the acoustic responses of the tested females. On the third night after eclosion, at the initiation of courtship behavior, females discriminate among these three types of acoustic trains, responding preferentially to conspecific male signals. In contrast, during the first two nights after eclosion, they respond strongly to the bat attack sequence but not to conspecific male signals. I also demonstrate that after mating (six nights after eclosion) female moths stop responding to conspecific male signals, while continuing to respond to the bat attack pulse-train. These, as well as other novel observations suggest that these female moths can modulate their acoustic signals according to the stimulating conditions for defense against bats or courtship, by varying their response thresholds and latencies.
期刊介绍:
The Journal of Comparative Physiology A welcomes original articles, short reviews, and short communications in the following fields:
- Neurobiology and neuroethology
- Sensory physiology and ecology
- Physiological and hormonal basis of behavior
- Communication, orientation, and locomotion
- Functional imaging and neuroanatomy
Contributions should add to our understanding of mechanisms and not be purely descriptive. The level of organization addressed may be organismic, cellular, or molecular.
Colour figures are free in print and online.