针对阿尔茨海默病认知增强的神经振荡。

IF 2.4 4区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Federica Palacino, Paolo Manganotti, Alberto Benussi
{"title":"针对阿尔茨海默病认知增强的神经振荡。","authors":"Federica Palacino, Paolo Manganotti, Alberto Benussi","doi":"10.3390/medicina61030547","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD), the most prevalent form of dementia, is marked by progressive cognitive decline, affecting memory, language, orientation, and behavior. Pathological hallmarks include extracellular amyloid plaques and intracellular tau tangles, which disrupt synaptic function and connectivity. Neural oscillations, the rhythmic synchronization of neuronal activity across frequency bands, are integral to cognitive processes but become dysregulated in AD, contributing to network dysfunction and memory impairments. Targeting these oscillations has emerged as a promising therapeutic strategy. Preclinical studies have demonstrated that specific frequency modulations can restore oscillatory balance, improve synaptic plasticity, and reduce amyloid and tau pathology. In animal models, interventions, such as gamma entrainment using sensory stimulation and transcranial alternating current stimulation (tACS), have shown efficacy in enhancing memory function and modulating neuroinflammatory responses. Clinical trials have reported promising cognitive improvements with repetitive transcranial magnetic stimulation (rTMS) and deep brain stimulation (DBS), particularly when targeting key hubs in memory-related networks, such as the default mode network (DMN) and frontal-parietal network. Moreover, gamma-tACS has been linked to increased cholinergic activity and enhanced network connectivity, which are correlated with improved cognitive outcomes in AD patients. Despite these advancements, challenges remain in optimizing stimulation parameters, individualizing treatment protocols, and understanding long-term effects. Emerging approaches, including transcranial pulse stimulation (TPS) and closed-loop adaptive neuromodulation, hold promise for refining therapeutic strategies. Integrating neuromodulation with pharmacological and lifestyle interventions may maximize cognitive benefits. Continued interdisciplinary efforts are essential to refine these approaches and translate them into clinical practice, advancing the potential for neural oscillation-based therapies in AD.</p>","PeriodicalId":49830,"journal":{"name":"Medicina-Lithuania","volume":"61 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943909/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting Neural Oscillations for Cognitive Enhancement in Alzheimer's Disease.\",\"authors\":\"Federica Palacino, Paolo Manganotti, Alberto Benussi\",\"doi\":\"10.3390/medicina61030547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD), the most prevalent form of dementia, is marked by progressive cognitive decline, affecting memory, language, orientation, and behavior. Pathological hallmarks include extracellular amyloid plaques and intracellular tau tangles, which disrupt synaptic function and connectivity. Neural oscillations, the rhythmic synchronization of neuronal activity across frequency bands, are integral to cognitive processes but become dysregulated in AD, contributing to network dysfunction and memory impairments. Targeting these oscillations has emerged as a promising therapeutic strategy. Preclinical studies have demonstrated that specific frequency modulations can restore oscillatory balance, improve synaptic plasticity, and reduce amyloid and tau pathology. In animal models, interventions, such as gamma entrainment using sensory stimulation and transcranial alternating current stimulation (tACS), have shown efficacy in enhancing memory function and modulating neuroinflammatory responses. Clinical trials have reported promising cognitive improvements with repetitive transcranial magnetic stimulation (rTMS) and deep brain stimulation (DBS), particularly when targeting key hubs in memory-related networks, such as the default mode network (DMN) and frontal-parietal network. Moreover, gamma-tACS has been linked to increased cholinergic activity and enhanced network connectivity, which are correlated with improved cognitive outcomes in AD patients. Despite these advancements, challenges remain in optimizing stimulation parameters, individualizing treatment protocols, and understanding long-term effects. Emerging approaches, including transcranial pulse stimulation (TPS) and closed-loop adaptive neuromodulation, hold promise for refining therapeutic strategies. Integrating neuromodulation with pharmacological and lifestyle interventions may maximize cognitive benefits. Continued interdisciplinary efforts are essential to refine these approaches and translate them into clinical practice, advancing the potential for neural oscillation-based therapies in AD.</p>\",\"PeriodicalId\":49830,\"journal\":{\"name\":\"Medicina-Lithuania\",\"volume\":\"61 3\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943909/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicina-Lithuania\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/medicina61030547\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicina-Lithuania","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/medicina61030547","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是最常见的痴呆症形式,其特征是认知能力逐渐下降,影响记忆、语言、定向和行为。病理特征包括细胞外淀粉样斑块和细胞内tau缠结,它们破坏突触功能和连通性。神经振荡,即神经元活动跨频带的节律同步,是认知过程不可或缺的一部分,但在阿尔茨海默病中变得失调,导致网络功能障碍和记忆障碍。靶向这些振荡已成为一种有前途的治疗策略。临床前研究表明,特定的频率调节可以恢复振荡平衡,改善突触可塑性,减少淀粉样蛋白和tau蛋白病理。在动物模型中,使用感觉刺激和经颅交流电刺激(tACS)等干预措施已显示出增强记忆功能和调节神经炎症反应的功效。临床试验报告了重复经颅磁刺激(rTMS)和深部脑刺激(DBS)有希望改善认知,特别是当针对记忆相关网络中的关键枢纽时,如默认模式网络(DMN)和额顶叶网络。此外,γ - tacs与增加的胆碱能活性和增强的网络连接有关,这与阿尔茨海默病患者的认知结果改善有关。尽管取得了这些进步,但在优化增产参数、个性化治疗方案和了解长期效果方面仍然存在挑战。包括经颅脉冲刺激(TPS)和闭环自适应神经调节在内的新兴方法有望改善治疗策略。将神经调节与药理学和生活方式干预相结合可以最大限度地提高认知效益。持续的跨学科努力对于完善这些方法并将其转化为临床实践至关重要,从而推进基于神经振荡的阿尔茨海默病治疗的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeting Neural Oscillations for Cognitive Enhancement in Alzheimer's Disease.

Alzheimer's disease (AD), the most prevalent form of dementia, is marked by progressive cognitive decline, affecting memory, language, orientation, and behavior. Pathological hallmarks include extracellular amyloid plaques and intracellular tau tangles, which disrupt synaptic function and connectivity. Neural oscillations, the rhythmic synchronization of neuronal activity across frequency bands, are integral to cognitive processes but become dysregulated in AD, contributing to network dysfunction and memory impairments. Targeting these oscillations has emerged as a promising therapeutic strategy. Preclinical studies have demonstrated that specific frequency modulations can restore oscillatory balance, improve synaptic plasticity, and reduce amyloid and tau pathology. In animal models, interventions, such as gamma entrainment using sensory stimulation and transcranial alternating current stimulation (tACS), have shown efficacy in enhancing memory function and modulating neuroinflammatory responses. Clinical trials have reported promising cognitive improvements with repetitive transcranial magnetic stimulation (rTMS) and deep brain stimulation (DBS), particularly when targeting key hubs in memory-related networks, such as the default mode network (DMN) and frontal-parietal network. Moreover, gamma-tACS has been linked to increased cholinergic activity and enhanced network connectivity, which are correlated with improved cognitive outcomes in AD patients. Despite these advancements, challenges remain in optimizing stimulation parameters, individualizing treatment protocols, and understanding long-term effects. Emerging approaches, including transcranial pulse stimulation (TPS) and closed-loop adaptive neuromodulation, hold promise for refining therapeutic strategies. Integrating neuromodulation with pharmacological and lifestyle interventions may maximize cognitive benefits. Continued interdisciplinary efforts are essential to refine these approaches and translate them into clinical practice, advancing the potential for neural oscillation-based therapies in AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medicina-Lithuania
Medicina-Lithuania 医学-医学:内科
CiteScore
3.30
自引率
3.80%
发文量
1578
审稿时长
25.04 days
期刊介绍: The journal’s main focus is on reviews as well as clinical and experimental investigations. The journal aims to advance knowledge related to problems in medicine in developing countries as well as developed economies, to disseminate research on global health, and to promote and foster prevention and treatment of diseases worldwide. MEDICINA publications cater to clinicians, diagnosticians and researchers, and serve as a forum to discuss the current status of health-related matters and their impact on a global and local scale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信