低钾胁迫下,振子K+通道NKT3A促进烟草幼苗钾的吸收和转运。

IF 2.7 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Haiying Xiang, Guang Yuan, Chuhan Shi, Li Xu, Jianduo Zhang, Qili Mi, Qian Gao, Wenwu Yang, Haitao Huang, Kunmiao Wang, Wanli Zeng, Yang Ning, Qian Wang
{"title":"低钾胁迫下,振子K+通道NKT3A促进烟草幼苗钾的吸收和转运。","authors":"Haiying Xiang, Guang Yuan, Chuhan Shi, Li Xu, Jianduo Zhang, Qili Mi, Qian Gao, Wenwu Yang, Haitao Huang, Kunmiao Wang, Wanli Zeng, Yang Ning, Qian Wang","doi":"10.1007/s11248-024-00419-4","DOIUrl":null,"url":null,"abstract":"<p><p>One of the nutrients that is necessary for plant growth and development is potassium (K<sup>+</sup>). The uneven production and distribution of global potassium resources significantly challenge crop yields and quality. A moderate increase in the potassium content within plants can enhance both crop yield and quality. This study identifies the Shaker K<sup>+</sup> channel NKT3A within the model crop, tobacco. The yeast heterologous expression system demonstrated its capability for K<sup>+</sup> inward transportation. GUS staining and RT-qPCR analyses of the constructed promoter materials revealed NKT3A's activity during the tobacco seedling stage. Expression levels are higher in the leaf and stems, with low potassium levels inducing upregulation of its expression, also observed in roots. Gene editing technology was employed to construct overexpression and knockout mutants, with subsequent measurement of their phenotypes. Results indicate that NKT3A expression enhances facilitates potassium absorption and transport in tobacco seedlings under low potassium conditions. For the first time, this article identifies the Shaker potassium channel gene NKT3A, which functions as an inward rectifier K<sup>+</sup> channel in tobacco. It elucidates the gene's role in regulating potassium distribution under low potassium conditions, thereby deepening our understanding of plant responses in such environments and offering a potential target for enhancing crop potassium use efficiency.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"34 1","pages":"17"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shaker K<sup>+</sup> channel NKT3A enhances potassium uptake and transport in tobacco (Nicotiana tabacum L.) seedlings under low potassium stress.\",\"authors\":\"Haiying Xiang, Guang Yuan, Chuhan Shi, Li Xu, Jianduo Zhang, Qili Mi, Qian Gao, Wenwu Yang, Haitao Huang, Kunmiao Wang, Wanli Zeng, Yang Ning, Qian Wang\",\"doi\":\"10.1007/s11248-024-00419-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the nutrients that is necessary for plant growth and development is potassium (K<sup>+</sup>). The uneven production and distribution of global potassium resources significantly challenge crop yields and quality. A moderate increase in the potassium content within plants can enhance both crop yield and quality. This study identifies the Shaker K<sup>+</sup> channel NKT3A within the model crop, tobacco. The yeast heterologous expression system demonstrated its capability for K<sup>+</sup> inward transportation. GUS staining and RT-qPCR analyses of the constructed promoter materials revealed NKT3A's activity during the tobacco seedling stage. Expression levels are higher in the leaf and stems, with low potassium levels inducing upregulation of its expression, also observed in roots. Gene editing technology was employed to construct overexpression and knockout mutants, with subsequent measurement of their phenotypes. Results indicate that NKT3A expression enhances facilitates potassium absorption and transport in tobacco seedlings under low potassium conditions. For the first time, this article identifies the Shaker potassium channel gene NKT3A, which functions as an inward rectifier K<sup>+</sup> channel in tobacco. It elucidates the gene's role in regulating potassium distribution under low potassium conditions, thereby deepening our understanding of plant responses in such environments and offering a potential target for enhancing crop potassium use efficiency.</p>\",\"PeriodicalId\":23258,\"journal\":{\"name\":\"Transgenic Research\",\"volume\":\"34 1\",\"pages\":\"17\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transgenic Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11248-024-00419-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transgenic Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11248-024-00419-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

钾是植物生长发育所必需的营养物质之一。全球钾资源的生产和分布不均严重影响了作物的产量和品质。适度增加植株内钾含量可提高作物产量和品质。本研究确定了模式作物烟草中的Shaker K+通道NKT3A。酵母异种表达系统具有向内运输K+的能力。GUS染色和RT-qPCR分析表明,NKT3A启动子在烟草苗期具有活性。在叶片和茎中表达水平较高,低钾水平诱导其表达上调,在根中也观察到。利用基因编辑技术构建过表达和敲除突变体,随后测量其表型。结果表明,低钾条件下,NKT3A表达的增强促进了烟草幼苗对钾的吸收和运输。本文首次鉴定了烟草中起向内整流钾离子通道作用的Shaker钾离子通道基因NKT3A。它阐明了该基因在低钾条件下调控钾分布的作用,从而加深了我们对这种环境下植物反应的理解,并为提高作物钾利用效率提供了潜在的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shaker K+ channel NKT3A enhances potassium uptake and transport in tobacco (Nicotiana tabacum L.) seedlings under low potassium stress.

One of the nutrients that is necessary for plant growth and development is potassium (K+). The uneven production and distribution of global potassium resources significantly challenge crop yields and quality. A moderate increase in the potassium content within plants can enhance both crop yield and quality. This study identifies the Shaker K+ channel NKT3A within the model crop, tobacco. The yeast heterologous expression system demonstrated its capability for K+ inward transportation. GUS staining and RT-qPCR analyses of the constructed promoter materials revealed NKT3A's activity during the tobacco seedling stage. Expression levels are higher in the leaf and stems, with low potassium levels inducing upregulation of its expression, also observed in roots. Gene editing technology was employed to construct overexpression and knockout mutants, with subsequent measurement of their phenotypes. Results indicate that NKT3A expression enhances facilitates potassium absorption and transport in tobacco seedlings under low potassium conditions. For the first time, this article identifies the Shaker potassium channel gene NKT3A, which functions as an inward rectifier K+ channel in tobacco. It elucidates the gene's role in regulating potassium distribution under low potassium conditions, thereby deepening our understanding of plant responses in such environments and offering a potential target for enhancing crop potassium use efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transgenic Research
Transgenic Research 生物-生化研究方法
CiteScore
5.40
自引率
0.00%
发文量
38
审稿时长
4-8 weeks
期刊介绍: Transgenic Research focusses on transgenic and genome edited higher organisms. Manuscripts emphasizing biotechnological applications are strongly encouraged. Intellectual property, ethical issues, societal impact and regulatory aspects also fall within the scope of the journal. Transgenic Research aims to bridge the gap between fundamental and applied science in molecular biology and biotechnology for the plant and animal academic and associated industry communities. Transgenic Research publishes -Original Papers -Reviews: Should critically summarize the current state-of-the-art of the subject in a dispassionate way. Authors are requested to contact a Board Member before submission. Reviews should not be descriptive; rather they should present the most up-to-date information on the subject in a dispassionate and critical way. Perspective Reviews which can address new or controversial aspects are encouraged. -Brief Communications: Should report significant developments in methodology and experimental transgenic higher organisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信