评估人工智能自动化在关节炎,特别是膝关节定量和半定量MRI评分中的潜力:系统的文献综述。

IF 2.2 3区 医学 Q2 ORTHOPEDICS
Skeletal Radiology Pub Date : 2025-11-01 Epub Date: 2025-03-26 DOI:10.1007/s00256-025-04922-5
Steel M McDonald, Banafshe Felfeliyan, Ali Hassan, Jessica C Küpper, Rehab El-Hajj, Stephanie Wichuk, Ashmeen Aneja, Cherise Kwok, Cindy X Y Zhang, Lennart Jans, Nele Herregods, Abhilash R Hareendranathan, Jacob L Jaremko
{"title":"评估人工智能自动化在关节炎,特别是膝关节定量和半定量MRI评分中的潜力:系统的文献综述。","authors":"Steel M McDonald, Banafshe Felfeliyan, Ali Hassan, Jessica C Küpper, Rehab El-Hajj, Stephanie Wichuk, Ashmeen Aneja, Cherise Kwok, Cindy X Y Zhang, Lennart Jans, Nele Herregods, Abhilash R Hareendranathan, Jacob L Jaremko","doi":"10.1007/s00256-025-04922-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This systematic review explores key quantitative and semi-quantitative MRI-based scoring systems for arthritis biomarkers, focusing on their potential for automation through AI.</p><p><strong>Methods: </strong>A systematic review of Medline, PubMed, and Scopus from 2014 to 2024. Keywords included MRI, arthritis, and quantitative/semi-quantitative. From the initial retrieval of 3321 papers, after exclusions, we evaluated the full-text for 129 studies from the past decade, 74 of which related specifically to knee osteoarthritis.</p><p><strong>Results: </strong>Publications on MRI arthritis scoring systems peaked in 2021 and have declined in recent years, likely due to a shift toward AI-driven automation. We assessed scoring systems for biomarkers including cartilage thickness, bone marrow edema, effusion/synovitis, erosions, osteophytes, intraosseous and periarticular fat metaplasia, and connective tissue integrity (meniscus/labrum), each varying in suitability for AI. Effusion, due to its high MRI T2 contrast, appears relatively straightforward to automate, while cartilage loss remains difficult to accurately quantify and localize despite heavy research interest. AI demonstrates suitability in meniscal tear detection and the potential to automate other biomarkers like BMEs, bone erosion, and osteophyte formation.</p><p><strong>Conclusion: </strong>AI is increasingly being used to automatically evaluate MRI for arthritis. This review identifies opportunities for AI to enhance longitudinal disease tracking and enable early intervention in arthritis by providing detailed scoring of inflammatory lesions and high-resolution evaluation of structural abnormalities.</p>","PeriodicalId":21783,"journal":{"name":"Skeletal Radiology","volume":" ","pages":"2339-2349"},"PeriodicalIF":2.2000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating potential for AI automation of quantitative and semi-quantitative MRI scoring in arthritis, especially at the knee: a systematic literature review.\",\"authors\":\"Steel M McDonald, Banafshe Felfeliyan, Ali Hassan, Jessica C Küpper, Rehab El-Hajj, Stephanie Wichuk, Ashmeen Aneja, Cherise Kwok, Cindy X Y Zhang, Lennart Jans, Nele Herregods, Abhilash R Hareendranathan, Jacob L Jaremko\",\"doi\":\"10.1007/s00256-025-04922-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This systematic review explores key quantitative and semi-quantitative MRI-based scoring systems for arthritis biomarkers, focusing on their potential for automation through AI.</p><p><strong>Methods: </strong>A systematic review of Medline, PubMed, and Scopus from 2014 to 2024. Keywords included MRI, arthritis, and quantitative/semi-quantitative. From the initial retrieval of 3321 papers, after exclusions, we evaluated the full-text for 129 studies from the past decade, 74 of which related specifically to knee osteoarthritis.</p><p><strong>Results: </strong>Publications on MRI arthritis scoring systems peaked in 2021 and have declined in recent years, likely due to a shift toward AI-driven automation. We assessed scoring systems for biomarkers including cartilage thickness, bone marrow edema, effusion/synovitis, erosions, osteophytes, intraosseous and periarticular fat metaplasia, and connective tissue integrity (meniscus/labrum), each varying in suitability for AI. Effusion, due to its high MRI T2 contrast, appears relatively straightforward to automate, while cartilage loss remains difficult to accurately quantify and localize despite heavy research interest. AI demonstrates suitability in meniscal tear detection and the potential to automate other biomarkers like BMEs, bone erosion, and osteophyte formation.</p><p><strong>Conclusion: </strong>AI is increasingly being used to automatically evaluate MRI for arthritis. This review identifies opportunities for AI to enhance longitudinal disease tracking and enable early intervention in arthritis by providing detailed scoring of inflammatory lesions and high-resolution evaluation of structural abnormalities.</p>\",\"PeriodicalId\":21783,\"journal\":{\"name\":\"Skeletal Radiology\",\"volume\":\" \",\"pages\":\"2339-2349\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Skeletal Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00256-025-04922-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00256-025-04922-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:本系统综述探讨了关节炎生物标志物的关键定量和半定量mri评分系统,重点关注其通过人工智能实现自动化的潜力。方法:对2014 - 2024年Medline、PubMed和Scopus数据库进行系统综述。关键词包括MRI,关节炎,定量/半定量。从最初检索的3321篇论文中,经过排除,我们评估了过去十年中129项研究的全文,其中74项与膝关节骨关节炎有关。结果:关于MRI关节炎评分系统的出版物在2021年达到顶峰,近年来有所下降,可能是由于转向人工智能驱动的自动化。我们评估了生物标志物评分系统,包括软骨厚度、骨髓水肿、积液/滑膜炎、糜烂、骨赘、骨内和关节周围脂肪化生,以及结缔组织完整性(半月板/唇状),这些生物标志物在人工智能的适用性方面各不相同。积液,由于其高MRI T2对比度,似乎相对容易自动化,而软骨损失仍然难以准确量化和定位,尽管有大量的研究兴趣。人工智能证明了半月板撕裂检测的适用性,以及自动化其他生物标志物(如BMEs、骨侵蚀和骨赘形成)的潜力。结论:人工智能越来越多地用于关节炎MRI的自动评估。本综述通过提供炎症病变的详细评分和结构异常的高分辨率评估,确定了人工智能加强纵向疾病跟踪和早期干预关节炎的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating potential for AI automation of quantitative and semi-quantitative MRI scoring in arthritis, especially at the knee: a systematic literature review.

Objective: This systematic review explores key quantitative and semi-quantitative MRI-based scoring systems for arthritis biomarkers, focusing on their potential for automation through AI.

Methods: A systematic review of Medline, PubMed, and Scopus from 2014 to 2024. Keywords included MRI, arthritis, and quantitative/semi-quantitative. From the initial retrieval of 3321 papers, after exclusions, we evaluated the full-text for 129 studies from the past decade, 74 of which related specifically to knee osteoarthritis.

Results: Publications on MRI arthritis scoring systems peaked in 2021 and have declined in recent years, likely due to a shift toward AI-driven automation. We assessed scoring systems for biomarkers including cartilage thickness, bone marrow edema, effusion/synovitis, erosions, osteophytes, intraosseous and periarticular fat metaplasia, and connective tissue integrity (meniscus/labrum), each varying in suitability for AI. Effusion, due to its high MRI T2 contrast, appears relatively straightforward to automate, while cartilage loss remains difficult to accurately quantify and localize despite heavy research interest. AI demonstrates suitability in meniscal tear detection and the potential to automate other biomarkers like BMEs, bone erosion, and osteophyte formation.

Conclusion: AI is increasingly being used to automatically evaluate MRI for arthritis. This review identifies opportunities for AI to enhance longitudinal disease tracking and enable early intervention in arthritis by providing detailed scoring of inflammatory lesions and high-resolution evaluation of structural abnormalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Skeletal Radiology
Skeletal Radiology 医学-核医学
CiteScore
4.40
自引率
9.50%
发文量
253
审稿时长
3-8 weeks
期刊介绍: Skeletal Radiology provides a forum for the dissemination of current knowledge and information dealing with disorders of the musculoskeletal system including the spine. While emphasizing the radiological aspects of the many varied skeletal abnormalities, the journal also adopts an interdisciplinary approach, reflecting the membership of the International Skeletal Society. Thus, the anatomical, pathological, physiological, clinical, metabolic and epidemiological aspects of the many entities affecting the skeleton receive appropriate consideration. This is the Journal of the International Skeletal Society and the Official Journal of the Society of Skeletal Radiology and the Australasian Musculoskelelal Imaging Group.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信