Patricia Balaresque, Sébastien Delmotte, Franklin Delehelle, Andreia Moreira, Nancy Saenz-Oyhéréguy, Myriam Croze, Tatyana Hegay, Tamara Aripova, Sylvie Le Bomin, Philippe Mennecier, Didier Descouens, Sylvain Cussat-Blanc, Hervé Luga, Angel Guevara, Maria Eugenia D'Amato, Turi King, Catherine Mollereau, Evelyne Heyer
{"title":"性别和环境影响着全球人群的耳蜗敏感度。","authors":"Patricia Balaresque, Sébastien Delmotte, Franklin Delehelle, Andreia Moreira, Nancy Saenz-Oyhéréguy, Myriam Croze, Tatyana Hegay, Tamara Aripova, Sylvie Le Bomin, Philippe Mennecier, Didier Descouens, Sylvain Cussat-Blanc, Hervé Luga, Angel Guevara, Maria Eugenia D'Amato, Turi King, Catherine Mollereau, Evelyne Heyer","doi":"10.1038/s41598-025-92763-6","DOIUrl":null,"url":null,"abstract":"<p><p>Hearing remains an underexplored aspect of human evolution. While the growing prevalence of hearing issues worldwide highlights the need to investigate factors beyond age, ototoxic substances, and recreational noise- factors affecting only a subset of the population -the role of environmental influences remains relatively unaddressed. In contrast, hearing and vocalizations have been extensively studied in many vertebrates through the Acoustic Adaptation Hypothesis, which suggests that acoustic communication adapts to the structure of the immediate environment. To explore how the environment shapes the ear's ability to process sound, studying the cochlea is essential since it is responsible for capturing, amplifying, and converting sound waves into electrical signals. Cochlear sensitivity can be measured using Transient-Evoked Otoacoustic Emissions (TEOAE), which assess the cochlea's ability to produce and transmit an acoustic response after sound stimulation. By analyzing TEOAE profiles, we gain valuable insights into how the cochlea responds to external auditory stimuli. We evaluated the influence of both endogenous (age, sex, ear side) and exogenous factors (ethnicity, environment, language) on cochlear sensitivity by collecting TEOAE data from 448 healthy individuals across 13 global populations in Ecuador, England, Gabon, South Africa, and Uzbekistan, living in diverse environments. For each individual, we derived six acoustic metrics from these TEOAE profiles to characterize the amplitude and frequency spectrum of cochlear sensitivity. Our results show that amplitude is primarily influenced by sex (up to 2 dB) and environment (up to 3.6 dB), followed by age and ear side. The frequency spectrum is determined exclusively by exogenous factors, with environment- particularly altitude, and urban versus rural settings -being the most significant. These findings challenge existing assumptions and highlight the need to consider both biological and environmental factors when studying auditory processes.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"10475"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947323/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sex and environment shape cochlear sensitivity in human populations worldwide.\",\"authors\":\"Patricia Balaresque, Sébastien Delmotte, Franklin Delehelle, Andreia Moreira, Nancy Saenz-Oyhéréguy, Myriam Croze, Tatyana Hegay, Tamara Aripova, Sylvie Le Bomin, Philippe Mennecier, Didier Descouens, Sylvain Cussat-Blanc, Hervé Luga, Angel Guevara, Maria Eugenia D'Amato, Turi King, Catherine Mollereau, Evelyne Heyer\",\"doi\":\"10.1038/s41598-025-92763-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hearing remains an underexplored aspect of human evolution. While the growing prevalence of hearing issues worldwide highlights the need to investigate factors beyond age, ototoxic substances, and recreational noise- factors affecting only a subset of the population -the role of environmental influences remains relatively unaddressed. In contrast, hearing and vocalizations have been extensively studied in many vertebrates through the Acoustic Adaptation Hypothesis, which suggests that acoustic communication adapts to the structure of the immediate environment. To explore how the environment shapes the ear's ability to process sound, studying the cochlea is essential since it is responsible for capturing, amplifying, and converting sound waves into electrical signals. Cochlear sensitivity can be measured using Transient-Evoked Otoacoustic Emissions (TEOAE), which assess the cochlea's ability to produce and transmit an acoustic response after sound stimulation. By analyzing TEOAE profiles, we gain valuable insights into how the cochlea responds to external auditory stimuli. We evaluated the influence of both endogenous (age, sex, ear side) and exogenous factors (ethnicity, environment, language) on cochlear sensitivity by collecting TEOAE data from 448 healthy individuals across 13 global populations in Ecuador, England, Gabon, South Africa, and Uzbekistan, living in diverse environments. For each individual, we derived six acoustic metrics from these TEOAE profiles to characterize the amplitude and frequency spectrum of cochlear sensitivity. Our results show that amplitude is primarily influenced by sex (up to 2 dB) and environment (up to 3.6 dB), followed by age and ear side. The frequency spectrum is determined exclusively by exogenous factors, with environment- particularly altitude, and urban versus rural settings -being the most significant. These findings challenge existing assumptions and highlight the need to consider both biological and environmental factors when studying auditory processes.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"10475\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947323/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-92763-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-92763-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Sex and environment shape cochlear sensitivity in human populations worldwide.
Hearing remains an underexplored aspect of human evolution. While the growing prevalence of hearing issues worldwide highlights the need to investigate factors beyond age, ototoxic substances, and recreational noise- factors affecting only a subset of the population -the role of environmental influences remains relatively unaddressed. In contrast, hearing and vocalizations have been extensively studied in many vertebrates through the Acoustic Adaptation Hypothesis, which suggests that acoustic communication adapts to the structure of the immediate environment. To explore how the environment shapes the ear's ability to process sound, studying the cochlea is essential since it is responsible for capturing, amplifying, and converting sound waves into electrical signals. Cochlear sensitivity can be measured using Transient-Evoked Otoacoustic Emissions (TEOAE), which assess the cochlea's ability to produce and transmit an acoustic response after sound stimulation. By analyzing TEOAE profiles, we gain valuable insights into how the cochlea responds to external auditory stimuli. We evaluated the influence of both endogenous (age, sex, ear side) and exogenous factors (ethnicity, environment, language) on cochlear sensitivity by collecting TEOAE data from 448 healthy individuals across 13 global populations in Ecuador, England, Gabon, South Africa, and Uzbekistan, living in diverse environments. For each individual, we derived six acoustic metrics from these TEOAE profiles to characterize the amplitude and frequency spectrum of cochlear sensitivity. Our results show that amplitude is primarily influenced by sex (up to 2 dB) and environment (up to 3.6 dB), followed by age and ear side. The frequency spectrum is determined exclusively by exogenous factors, with environment- particularly altitude, and urban versus rural settings -being the most significant. These findings challenge existing assumptions and highlight the need to consider both biological and environmental factors when studying auditory processes.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.