金黄色葡萄球菌n -乙酰氨基葡萄糖1-磷酸尿苷基转移酶(GlmU)的功能和结构特征揭示了其氧化还原敏感的乙酰转移酶活性。

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Protein Science Pub Date : 2025-04-01 DOI:10.1002/pro.70111
Jordan L Pederick, Akhil Kumar, Tara L Pukala, John B Bruning
{"title":"金黄色葡萄球菌n -乙酰氨基葡萄糖1-磷酸尿苷基转移酶(GlmU)的功能和结构特征揭示了其氧化还原敏感的乙酰转移酶活性。","authors":"Jordan L Pederick, Akhil Kumar, Tara L Pukala, John B Bruning","doi":"10.1002/pro.70111","DOIUrl":null,"url":null,"abstract":"<p><p>The bifunctional enzyme N-acetylglucosamine 1-phosphate uridyltransferase (GlmU) is a promising antibiotic drug target, as it facilitates the biosynthesis of uridine 5'-diphospho-N-acetylglucosamine, an essential precursor of cell wall constituents. We identified that Staphylococcus aureus GlmU (SaGlmU), which was previously targeted for inhibitor development, possesses a dual-cysteine variation (C379/C404) within the acetyltransferase active site. Enzyme assays performed under reducing and non-reducing conditions revealed that the acetyltransferase activity of SaGlmU is redox-sensitive, displaying ~15-fold lower turnover and ~3-fold higher K<sub>M</sub> value for the acetyl CoA substrate under non-reducing conditions. This sensitivity was absent in a C379A SaGlmU mutant. Analysis of SaGlmU by mass spectrometry, x-ray crystallography, and in silico modeling support that C379 and C404 act as a reversible, redox-sensitive switch by forming a disulfide under non-reducing conditions that impedes acetyl CoA recognition and turnover. Therefore, we recommend that future in vitro screening and characterization of SaGlmU inhibitors consider both reducing and non-reducing conditions.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 4","pages":"e70111"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947611/pdf/","citationCount":"0","resultStr":"{\"title\":\"Functional and structural characterization of Staphylococcus aureus N-acetylglucosamine 1-phosphate uridyltransferase (GlmU) reveals a redox-sensitive acetyltransferase activity.\",\"authors\":\"Jordan L Pederick, Akhil Kumar, Tara L Pukala, John B Bruning\",\"doi\":\"10.1002/pro.70111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The bifunctional enzyme N-acetylglucosamine 1-phosphate uridyltransferase (GlmU) is a promising antibiotic drug target, as it facilitates the biosynthesis of uridine 5'-diphospho-N-acetylglucosamine, an essential precursor of cell wall constituents. We identified that Staphylococcus aureus GlmU (SaGlmU), which was previously targeted for inhibitor development, possesses a dual-cysteine variation (C379/C404) within the acetyltransferase active site. Enzyme assays performed under reducing and non-reducing conditions revealed that the acetyltransferase activity of SaGlmU is redox-sensitive, displaying ~15-fold lower turnover and ~3-fold higher K<sub>M</sub> value for the acetyl CoA substrate under non-reducing conditions. This sensitivity was absent in a C379A SaGlmU mutant. Analysis of SaGlmU by mass spectrometry, x-ray crystallography, and in silico modeling support that C379 and C404 act as a reversible, redox-sensitive switch by forming a disulfide under non-reducing conditions that impedes acetyl CoA recognition and turnover. Therefore, we recommend that future in vitro screening and characterization of SaGlmU inhibitors consider both reducing and non-reducing conditions.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"34 4\",\"pages\":\"e70111\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947611/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.70111\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70111","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

双功能酶n -乙酰氨基葡萄糖1-磷酸尿苷基转移酶(GlmU)是一种很有前景的抗生素药物靶点,因为它促进了尿苷5'-二磷酸- n -乙酰氨基葡萄糖胺的生物合成,尿苷是细胞壁成分的重要前体。我们发现,之前作为抑制剂开发目标的金黄色葡萄球菌GlmU (SaGlmU)在乙酰转移酶活性位点具有双半胱氨酸变异(C379/C404)。在还原和非还原条件下进行的酶分析表明,SaGlmU的乙酰转移酶活性对氧化还原敏感,在非还原条件下,乙酰辅酶a底物的周转率降低了约15倍,KM值提高了约3倍。这种敏感性在C379A SaGlmU突变体中不存在。通过质谱、x射线晶体学和硅模型分析SaGlmU,支持C379和C404作为可逆的氧化还原敏感开关,在非还原条件下形成二硫化物,阻碍乙酰辅酶a的识别和转换。因此,我们建议未来SaGlmU抑制剂的体外筛选和表征同时考虑还原和非还原条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional and structural characterization of Staphylococcus aureus N-acetylglucosamine 1-phosphate uridyltransferase (GlmU) reveals a redox-sensitive acetyltransferase activity.

The bifunctional enzyme N-acetylglucosamine 1-phosphate uridyltransferase (GlmU) is a promising antibiotic drug target, as it facilitates the biosynthesis of uridine 5'-diphospho-N-acetylglucosamine, an essential precursor of cell wall constituents. We identified that Staphylococcus aureus GlmU (SaGlmU), which was previously targeted for inhibitor development, possesses a dual-cysteine variation (C379/C404) within the acetyltransferase active site. Enzyme assays performed under reducing and non-reducing conditions revealed that the acetyltransferase activity of SaGlmU is redox-sensitive, displaying ~15-fold lower turnover and ~3-fold higher KM value for the acetyl CoA substrate under non-reducing conditions. This sensitivity was absent in a C379A SaGlmU mutant. Analysis of SaGlmU by mass spectrometry, x-ray crystallography, and in silico modeling support that C379 and C404 act as a reversible, redox-sensitive switch by forming a disulfide under non-reducing conditions that impedes acetyl CoA recognition and turnover. Therefore, we recommend that future in vitro screening and characterization of SaGlmU inhibitors consider both reducing and non-reducing conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信