Zoltán J Kovács, Péter Ecsédi, Gábor M Harami, János Pálinkás, Mina Botros, Lamiya Mahmudova, Viktoria Katran, Dávid Érfalvy, Miklós Cervenak, László Smeller, Mihály Kovács
{"title":"单链DNA结合蛋白(SSB)的球形区和无序区之间需要精细的相互作用才能在生理条件下进行动态凝聚。","authors":"Zoltán J Kovács, Péter Ecsédi, Gábor M Harami, János Pálinkás, Mina Botros, Lamiya Mahmudova, Viktoria Katran, Dávid Érfalvy, Miklós Cervenak, László Smeller, Mihály Kovács","doi":"10.1002/pro.70109","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing evidence points to the importance of liquid-liquid phase separation (LLPS)-driven protein condensation in both eukaryotic and bacterial cell physiology. The formation of condensates may involve interactions between both structured (globular) domains and intrinsically disordered protein regions and requires multivalency that is often brought about by oligomerization. Here we dissect such contributions by assessing engineered variants of bacterial (Escherichia coli) single-stranded DNA binding (SSB) protein whose condensation has recently been implicated in bacterial genome metabolism. A truncated SSB variant (SSBdC, lacking the conserved C-terminal peptide (CTP)) was used to assess the importance of interactions between SSB's globular oligonucleotide/oligosaccharide binding (OB) domain and the CTP. We show that OB-CTP interactions are essential for dynamic condensation in physiological (crowded, glutamate-rich) environments. Via assessment of a protein variant (SSB<sup>H55Y</sup>) from the known thermosensitive ssb-1 mutant, we also show that the perturbation of OB-OB contacts significantly impairs the stability of SSB tetramers and results in thermally induced protein aggregation, underscoring the importance of multivalence brought about by stereospecific contacts. Our data point to adaptive fine-tuning of SSB interactions to physiological condensation and demonstrate that SSB represents a versatile system for selective engineering of condensation-driving interactions between globular and disordered regions.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 4","pages":"e70109"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947617/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fine-tuned interactions between globular and disordered regions of single-stranded DNA binding (SSB) protein are required for dynamic condensation under physiological conditions.\",\"authors\":\"Zoltán J Kovács, Péter Ecsédi, Gábor M Harami, János Pálinkás, Mina Botros, Lamiya Mahmudova, Viktoria Katran, Dávid Érfalvy, Miklós Cervenak, László Smeller, Mihály Kovács\",\"doi\":\"10.1002/pro.70109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increasing evidence points to the importance of liquid-liquid phase separation (LLPS)-driven protein condensation in both eukaryotic and bacterial cell physiology. The formation of condensates may involve interactions between both structured (globular) domains and intrinsically disordered protein regions and requires multivalency that is often brought about by oligomerization. Here we dissect such contributions by assessing engineered variants of bacterial (Escherichia coli) single-stranded DNA binding (SSB) protein whose condensation has recently been implicated in bacterial genome metabolism. A truncated SSB variant (SSBdC, lacking the conserved C-terminal peptide (CTP)) was used to assess the importance of interactions between SSB's globular oligonucleotide/oligosaccharide binding (OB) domain and the CTP. We show that OB-CTP interactions are essential for dynamic condensation in physiological (crowded, glutamate-rich) environments. Via assessment of a protein variant (SSB<sup>H55Y</sup>) from the known thermosensitive ssb-1 mutant, we also show that the perturbation of OB-OB contacts significantly impairs the stability of SSB tetramers and results in thermally induced protein aggregation, underscoring the importance of multivalence brought about by stereospecific contacts. Our data point to adaptive fine-tuning of SSB interactions to physiological condensation and demonstrate that SSB represents a versatile system for selective engineering of condensation-driving interactions between globular and disordered regions.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"34 4\",\"pages\":\"e70109\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947617/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.70109\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70109","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Fine-tuned interactions between globular and disordered regions of single-stranded DNA binding (SSB) protein are required for dynamic condensation under physiological conditions.
Increasing evidence points to the importance of liquid-liquid phase separation (LLPS)-driven protein condensation in both eukaryotic and bacterial cell physiology. The formation of condensates may involve interactions between both structured (globular) domains and intrinsically disordered protein regions and requires multivalency that is often brought about by oligomerization. Here we dissect such contributions by assessing engineered variants of bacterial (Escherichia coli) single-stranded DNA binding (SSB) protein whose condensation has recently been implicated in bacterial genome metabolism. A truncated SSB variant (SSBdC, lacking the conserved C-terminal peptide (CTP)) was used to assess the importance of interactions between SSB's globular oligonucleotide/oligosaccharide binding (OB) domain and the CTP. We show that OB-CTP interactions are essential for dynamic condensation in physiological (crowded, glutamate-rich) environments. Via assessment of a protein variant (SSBH55Y) from the known thermosensitive ssb-1 mutant, we also show that the perturbation of OB-OB contacts significantly impairs the stability of SSB tetramers and results in thermally induced protein aggregation, underscoring the importance of multivalence brought about by stereospecific contacts. Our data point to adaptive fine-tuning of SSB interactions to physiological condensation and demonstrate that SSB represents a versatile system for selective engineering of condensation-driving interactions between globular and disordered regions.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).