荧光大黄酸脂质体体内生物分布研究。

IF 4.9 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Silviu Iulian Filipiuc, Natalia Simionescu, Gabriela Dumitrița Stanciu, Adina Coroaba, Narcisa Laura Marangoci, Leontina Elena Filipiuc, Mariana Pinteala, Cristina Mariana Uritu, Bogdan Ionel Tamba
{"title":"荧光大黄酸脂质体体内生物分布研究。","authors":"Silviu Iulian Filipiuc, Natalia Simionescu, Gabriela Dumitrița Stanciu, Adina Coroaba, Narcisa Laura Marangoci, Leontina Elena Filipiuc, Mariana Pinteala, Cristina Mariana Uritu, Bogdan Ionel Tamba","doi":"10.3390/pharmaceutics17030307","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives:</b> This work aimed to develop and investigate liposomes incorporating Rhein (Lip-Rh) into the liposomal membrane to enhance the compound's water solubility and oral bioavailability. <b>Methods:</b> Liposomes were produced by the thin lipid film technique, with a phosphatidylcholine-to-cholesterol molar ratio of 5:1, dissolved in chloroform and methanol, and thereafter hydrated with ultrapure water and subjected to sonication. The resultant liposomes were studied from a physicochemical perspective using DLS, zeta potential, STEM, UV-Vis, and fluorescence spectroscopies, while oral bioavailability was assessed by fluorescence imaging. Additionally, cell viability assays were performed on tumour cells (MCF-7) in comparison to normal cells (HGFs). <b>Results:</b> The resultant nanoparticles exhibited relatively uniform sizes and narrow size distribution. In vivo fluorescence imaging studies performed on Wistar rats demonstrated significantly enhanced oral bioavailability for Lip-Rh, with rapid absorption into the bloodstream observed one hour after administration, in contrast to the free compound dissolved in vegetable oil. Cell viability assays demonstrated higher cytotoxicity of Lip-Rh towards MCF-7 cells compared to HGF cells, highlighting the selective therapeutic potential of the product. Moreover, we determined that the optimal dose of Rhein per kilogram of body weight, when encapsulated in liposomes, is approximately 2.5 times less than when Rhein is delivered in its unencapsulated form. <b>Conclusions:</b> Lip-Rh is a promising candidate for oncological treatments, presenting three key advantages: increased cytotoxicity towards tumour cells, protection of normal tissues, and the practicality of oral delivery. Additional investigation is required to explore its application in anticancer therapy, whether as monotherapy or as a complementary treatment.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944368/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fluorescent Rhein-Loaded Liposomes for In Vivo Biodistribution Study.\",\"authors\":\"Silviu Iulian Filipiuc, Natalia Simionescu, Gabriela Dumitrița Stanciu, Adina Coroaba, Narcisa Laura Marangoci, Leontina Elena Filipiuc, Mariana Pinteala, Cristina Mariana Uritu, Bogdan Ionel Tamba\",\"doi\":\"10.3390/pharmaceutics17030307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objectives:</b> This work aimed to develop and investigate liposomes incorporating Rhein (Lip-Rh) into the liposomal membrane to enhance the compound's water solubility and oral bioavailability. <b>Methods:</b> Liposomes were produced by the thin lipid film technique, with a phosphatidylcholine-to-cholesterol molar ratio of 5:1, dissolved in chloroform and methanol, and thereafter hydrated with ultrapure water and subjected to sonication. The resultant liposomes were studied from a physicochemical perspective using DLS, zeta potential, STEM, UV-Vis, and fluorescence spectroscopies, while oral bioavailability was assessed by fluorescence imaging. Additionally, cell viability assays were performed on tumour cells (MCF-7) in comparison to normal cells (HGFs). <b>Results:</b> The resultant nanoparticles exhibited relatively uniform sizes and narrow size distribution. In vivo fluorescence imaging studies performed on Wistar rats demonstrated significantly enhanced oral bioavailability for Lip-Rh, with rapid absorption into the bloodstream observed one hour after administration, in contrast to the free compound dissolved in vegetable oil. Cell viability assays demonstrated higher cytotoxicity of Lip-Rh towards MCF-7 cells compared to HGF cells, highlighting the selective therapeutic potential of the product. Moreover, we determined that the optimal dose of Rhein per kilogram of body weight, when encapsulated in liposomes, is approximately 2.5 times less than when Rhein is delivered in its unencapsulated form. <b>Conclusions:</b> Lip-Rh is a promising candidate for oncological treatments, presenting three key advantages: increased cytotoxicity towards tumour cells, protection of normal tissues, and the practicality of oral delivery. Additional investigation is required to explore its application in anticancer therapy, whether as monotherapy or as a complementary treatment.</p>\",\"PeriodicalId\":19894,\"journal\":{\"name\":\"Pharmaceutics\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944368/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pharmaceutics17030307\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17030307","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

目的:研究在脂质体膜中加入Rhein (Lip-Rh)的脂质体,以提高其水溶性和口服生物利用度。方法:采用脂膜法制备脂质体,磷脂酰胆碱与胆固醇的摩尔比为5:1,用氯仿和甲醇溶解,超纯水水化,超声处理。利用DLS、zeta电位、STEM、UV-Vis和荧光光谱从理化角度研究所得脂质体,并通过荧光成像评估口服生物利用度。此外,将肿瘤细胞(MCF-7)与正常细胞(HGFs)进行细胞活力测定。结果:制备的纳米颗粒尺寸相对均匀,粒径分布较窄。在Wistar大鼠身上进行的体内荧光成像研究表明,Lip-Rh的口服生物利用度显著提高,与溶解在植物油中的游离化合物相比,在给药一小时后,Lip-Rh迅速被血液吸收。细胞活力测试显示,与HGF细胞相比,Lip-Rh对MCF-7细胞具有更高的细胞毒性,突出了该产品的选择性治疗潜力。此外,我们确定,每公斤体重的最佳剂量的莱茵,当包被在脂质体,大约是2.5倍的莱茵在其未包被形式传递。结论:Lip-Rh是一种很有前途的肿瘤治疗候选药物,具有三个关键优势:增加对肿瘤细胞的细胞毒性,保护正常组织,以及口服给药的实用性。需要进一步的研究来探索其在抗癌治疗中的应用,无论是作为单一治疗还是作为补充治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fluorescent Rhein-Loaded Liposomes for In Vivo Biodistribution Study.

Objectives: This work aimed to develop and investigate liposomes incorporating Rhein (Lip-Rh) into the liposomal membrane to enhance the compound's water solubility and oral bioavailability. Methods: Liposomes were produced by the thin lipid film technique, with a phosphatidylcholine-to-cholesterol molar ratio of 5:1, dissolved in chloroform and methanol, and thereafter hydrated with ultrapure water and subjected to sonication. The resultant liposomes were studied from a physicochemical perspective using DLS, zeta potential, STEM, UV-Vis, and fluorescence spectroscopies, while oral bioavailability was assessed by fluorescence imaging. Additionally, cell viability assays were performed on tumour cells (MCF-7) in comparison to normal cells (HGFs). Results: The resultant nanoparticles exhibited relatively uniform sizes and narrow size distribution. In vivo fluorescence imaging studies performed on Wistar rats demonstrated significantly enhanced oral bioavailability for Lip-Rh, with rapid absorption into the bloodstream observed one hour after administration, in contrast to the free compound dissolved in vegetable oil. Cell viability assays demonstrated higher cytotoxicity of Lip-Rh towards MCF-7 cells compared to HGF cells, highlighting the selective therapeutic potential of the product. Moreover, we determined that the optimal dose of Rhein per kilogram of body weight, when encapsulated in liposomes, is approximately 2.5 times less than when Rhein is delivered in its unencapsulated form. Conclusions: Lip-Rh is a promising candidate for oncological treatments, presenting three key advantages: increased cytotoxicity towards tumour cells, protection of normal tissues, and the practicality of oral delivery. Additional investigation is required to explore its application in anticancer therapy, whether as monotherapy or as a complementary treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutics
Pharmaceutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍: Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications,  and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信