ATC药物类别的精炼ADME配置文件。

IF 4.9 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Luca Menestrina, Raquel Parrondo-Pizarro, Ismael Gómez, Ricard Garcia-Serna, Scott Boyer, Jordi Mestres
{"title":"ATC药物类别的精炼ADME配置文件。","authors":"Luca Menestrina, Raquel Parrondo-Pizarro, Ismael Gómez, Ricard Garcia-Serna, Scott Boyer, Jordi Mestres","doi":"10.3390/pharmaceutics17030308","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Modern generative chemistry initiatives aim to produce potent and selective novel synthetically feasible molecules with suitable pharmacokinetic properties. General ranges of physicochemical properties relevant for the absorption, distribution, metabolism, and excretion (ADME) of drugs have been used for decades. However, the therapeutic indication, dosing route, and pharmacodynamic response of the individual drug discovery program may ultimately define a distinct desired property profile. <b>Methods:</b> A methodological pipeline to build and validate machine learning (ML) models on physicochemical and ADME properties of small molecules is introduced. <b>Results:</b> The analysis of publicly available data on several ADME properties presented in this work reveals significant differences in the property value distributions across the various levels of the anatomical, therapeutic, and chemical (ATC) drug classification. For most properties, the predicted data distributions agree well with the corresponding distributions derived from experimental data across fourteen drug classes. <b>Conclusions:</b> The refined ADME profiles for ATC drug classes should be useful to guide the <i>de novo</i> generation of advanced lead structures directed toward specific therapeutic indications.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944659/pdf/","citationCount":"0","resultStr":"{\"title\":\"Refined ADME Profiles for ATC Drug Classes.\",\"authors\":\"Luca Menestrina, Raquel Parrondo-Pizarro, Ismael Gómez, Ricard Garcia-Serna, Scott Boyer, Jordi Mestres\",\"doi\":\"10.3390/pharmaceutics17030308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Modern generative chemistry initiatives aim to produce potent and selective novel synthetically feasible molecules with suitable pharmacokinetic properties. General ranges of physicochemical properties relevant for the absorption, distribution, metabolism, and excretion (ADME) of drugs have been used for decades. However, the therapeutic indication, dosing route, and pharmacodynamic response of the individual drug discovery program may ultimately define a distinct desired property profile. <b>Methods:</b> A methodological pipeline to build and validate machine learning (ML) models on physicochemical and ADME properties of small molecules is introduced. <b>Results:</b> The analysis of publicly available data on several ADME properties presented in this work reveals significant differences in the property value distributions across the various levels of the anatomical, therapeutic, and chemical (ATC) drug classification. For most properties, the predicted data distributions agree well with the corresponding distributions derived from experimental data across fourteen drug classes. <b>Conclusions:</b> The refined ADME profiles for ATC drug classes should be useful to guide the <i>de novo</i> generation of advanced lead structures directed toward specific therapeutic indications.</p>\",\"PeriodicalId\":19894,\"journal\":{\"name\":\"Pharmaceutics\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944659/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pharmaceutics17030308\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17030308","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

背景:现代生成化学的目的是产生有效的和选择性的新的合成可行的分子具有合适的药代动力学性质。与药物的吸收、分布、代谢和排泄(ADME)相关的物理化学性质的一般范围已经使用了几十年。然而,个别药物发现程序的治疗适应症、给药途径和药效学反应可能最终定义一个不同的期望的性质概况。方法:介绍了建立和验证小分子物理化学和ADME性质的机器学习(ML)模型的方法管道。结果:对本工作中提出的几种ADME属性的公开可用数据的分析显示,在解剖、治疗和化学(ATC)药物分类的各个级别上,属性值分布存在显着差异。对于大多数性质,预测的数据分布与从14种药物类别的实验数据中得出的相应分布非常吻合。结论:改进的ATC药物类别ADME谱可用于指导针对特定治疗适应症的先进导联结构的重新生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refined ADME Profiles for ATC Drug Classes.

Background: Modern generative chemistry initiatives aim to produce potent and selective novel synthetically feasible molecules with suitable pharmacokinetic properties. General ranges of physicochemical properties relevant for the absorption, distribution, metabolism, and excretion (ADME) of drugs have been used for decades. However, the therapeutic indication, dosing route, and pharmacodynamic response of the individual drug discovery program may ultimately define a distinct desired property profile. Methods: A methodological pipeline to build and validate machine learning (ML) models on physicochemical and ADME properties of small molecules is introduced. Results: The analysis of publicly available data on several ADME properties presented in this work reveals significant differences in the property value distributions across the various levels of the anatomical, therapeutic, and chemical (ATC) drug classification. For most properties, the predicted data distributions agree well with the corresponding distributions derived from experimental data across fourteen drug classes. Conclusions: The refined ADME profiles for ATC drug classes should be useful to guide the de novo generation of advanced lead structures directed toward specific therapeutic indications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutics
Pharmaceutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍: Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications,  and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信