{"title":"基于二维位置敏感探测器的扫描镜基准平台及其精度分析。","authors":"Hexiang Guo, Junya Wang, Zheng You","doi":"10.3390/mi16030348","DOIUrl":null,"url":null,"abstract":"<p><p>A MEMS scanning mirror is a beam scanning device based on MEMS technology, which plays an important role in the fields of Lidar, medical imaging, laser projection display, and so on. The accurate measurement of the scanning mirror index can verify its performance and application scenarios. This paper designed and built a scanning mirror benchmark platform based on a two-dimensional position-sensitive detector (PSD), which can accurately measure the deflection angle, resonance frequency, and angular resolution of the scanning mirror, and described the specific test steps of the scanning mirror parameters, which can meet the two-dimensional measurement. Secondly, this paper analyzed and calculated the angular test uncertainty of the designed test system. After considering the actual optical alignment error and PSD measurement error, when the distance between the PSD and MEMS scanning mirror is 100 mm, the range of mechanical deflection angle that can be measured is (-6.34°, +6.34°). When the mechanical deflection angle of the scanning mirror is 0.01°, the accuracy measured by the test system is 0.00097°, and when the mechanical deflection of the scanning mirror is 6.34°, the accuracy measured by the test system is 0.011°. The test platform has high accuracy and can measure the parameters of the scanning mirror accurately.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945176/pdf/","citationCount":"0","resultStr":"{\"title\":\"Scanning Mirror Benchmarking Platform Based on Two-Dimensional Position Sensitive Detector and Its Accuracy Analysis.\",\"authors\":\"Hexiang Guo, Junya Wang, Zheng You\",\"doi\":\"10.3390/mi16030348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A MEMS scanning mirror is a beam scanning device based on MEMS technology, which plays an important role in the fields of Lidar, medical imaging, laser projection display, and so on. The accurate measurement of the scanning mirror index can verify its performance and application scenarios. This paper designed and built a scanning mirror benchmark platform based on a two-dimensional position-sensitive detector (PSD), which can accurately measure the deflection angle, resonance frequency, and angular resolution of the scanning mirror, and described the specific test steps of the scanning mirror parameters, which can meet the two-dimensional measurement. Secondly, this paper analyzed and calculated the angular test uncertainty of the designed test system. After considering the actual optical alignment error and PSD measurement error, when the distance between the PSD and MEMS scanning mirror is 100 mm, the range of mechanical deflection angle that can be measured is (-6.34°, +6.34°). When the mechanical deflection angle of the scanning mirror is 0.01°, the accuracy measured by the test system is 0.00097°, and when the mechanical deflection of the scanning mirror is 6.34°, the accuracy measured by the test system is 0.011°. The test platform has high accuracy and can measure the parameters of the scanning mirror accurately.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945176/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16030348\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030348","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Scanning Mirror Benchmarking Platform Based on Two-Dimensional Position Sensitive Detector and Its Accuracy Analysis.
A MEMS scanning mirror is a beam scanning device based on MEMS technology, which plays an important role in the fields of Lidar, medical imaging, laser projection display, and so on. The accurate measurement of the scanning mirror index can verify its performance and application scenarios. This paper designed and built a scanning mirror benchmark platform based on a two-dimensional position-sensitive detector (PSD), which can accurately measure the deflection angle, resonance frequency, and angular resolution of the scanning mirror, and described the specific test steps of the scanning mirror parameters, which can meet the two-dimensional measurement. Secondly, this paper analyzed and calculated the angular test uncertainty of the designed test system. After considering the actual optical alignment error and PSD measurement error, when the distance between the PSD and MEMS scanning mirror is 100 mm, the range of mechanical deflection angle that can be measured is (-6.34°, +6.34°). When the mechanical deflection angle of the scanning mirror is 0.01°, the accuracy measured by the test system is 0.00097°, and when the mechanical deflection of the scanning mirror is 6.34°, the accuracy measured by the test system is 0.011°. The test platform has high accuracy and can measure the parameters of the scanning mirror accurately.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.