基于分子动力学方法提高IV型储氢瓶内胆材料断裂韧性

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-03-19 DOI:10.3390/ma18061363
Bingyu Yang, Jinqi Luo, Yuan Wu, Zhenhan Yang, Jianping Zhao
{"title":"基于分子动力学方法提高IV型储氢瓶内胆材料断裂韧性","authors":"Bingyu Yang, Jinqi Luo, Yuan Wu, Zhenhan Yang, Jianping Zhao","doi":"10.3390/ma18061363","DOIUrl":null,"url":null,"abstract":"<p><p>To develop liner materials with improved toughness, this study combines molecular dynamics simulations and experimental testing to investigate the effect of different mass ratios (10/0, 7/3, 6/4, 4/6, 3/7, and 0/10) of high-density polyethylene (HDPE)/polyamide 6 (PA6) on their fracture toughness of the composites. The fracture toughness was quantitatively assessed using the J-integral method, while the material's behavior in terms of crack propagation during tensile deformation was examined at the molecular level. The results reveal that as the HDPE mass ratio increases, the fracture toughness of the composites also gradually improves. Furthermore, the fracture toughness of four materials (PA6, 4HDPE/6PA6, 7HDPE/3PA6, and HDPE) was tested using the essential work of the fracture method. The trend observed in the simulation results was in agreement with the experimental results, validating the reliability of the molecular dynamics simulation.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943886/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancement of Fracture Toughness of Inner Liner Material for Type IV Hydrogen Storage Cylinders Based on Molecular Dynamics Method.\",\"authors\":\"Bingyu Yang, Jinqi Luo, Yuan Wu, Zhenhan Yang, Jianping Zhao\",\"doi\":\"10.3390/ma18061363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To develop liner materials with improved toughness, this study combines molecular dynamics simulations and experimental testing to investigate the effect of different mass ratios (10/0, 7/3, 6/4, 4/6, 3/7, and 0/10) of high-density polyethylene (HDPE)/polyamide 6 (PA6) on their fracture toughness of the composites. The fracture toughness was quantitatively assessed using the J-integral method, while the material's behavior in terms of crack propagation during tensile deformation was examined at the molecular level. The results reveal that as the HDPE mass ratio increases, the fracture toughness of the composites also gradually improves. Furthermore, the fracture toughness of four materials (PA6, 4HDPE/6PA6, 7HDPE/3PA6, and HDPE) was tested using the essential work of the fracture method. The trend observed in the simulation results was in agreement with the experimental results, validating the reliability of the molecular dynamics simulation.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 6\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943886/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18061363\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061363","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了开发具有更高韧性的内衬材料,本研究将分子动力学模拟和实验测试相结合,研究了高密度聚乙烯(HDPE)/聚酰胺6 (PA6)不同质量比(10/0、7/3、6/4、4/6、3/7和0/10)对复合材料断裂韧性的影响。断裂韧性采用j积分法进行定量评估,而材料在拉伸变形过程中的裂纹扩展行为在分子水平上进行了检测。结果表明,随着HDPE质量比的增加,复合材料的断裂韧性也逐渐提高。采用断裂法的基本工作,测试了4种材料(PA6、4HDPE/6PA6、7HDPE/3PA6和HDPE)的断裂韧性。模拟结果与实验结果吻合较好,验证了分子动力学模拟的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of Fracture Toughness of Inner Liner Material for Type IV Hydrogen Storage Cylinders Based on Molecular Dynamics Method.

To develop liner materials with improved toughness, this study combines molecular dynamics simulations and experimental testing to investigate the effect of different mass ratios (10/0, 7/3, 6/4, 4/6, 3/7, and 0/10) of high-density polyethylene (HDPE)/polyamide 6 (PA6) on their fracture toughness of the composites. The fracture toughness was quantitatively assessed using the J-integral method, while the material's behavior in terms of crack propagation during tensile deformation was examined at the molecular level. The results reveal that as the HDPE mass ratio increases, the fracture toughness of the composites also gradually improves. Furthermore, the fracture toughness of four materials (PA6, 4HDPE/6PA6, 7HDPE/3PA6, and HDPE) was tested using the essential work of the fracture method. The trend observed in the simulation results was in agreement with the experimental results, validating the reliability of the molecular dynamics simulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信