Bo Chen, Shenxu Bao, Yimin Zhang, Jiahao Zhou, Wei Ding, Liuyi Ren, Siyuan Yang, Ye Zhang
{"title":"高效超声辅助合成化学负载阴离子官能团离子液体及其对钒的增强吸附性能","authors":"Bo Chen, Shenxu Bao, Yimin Zhang, Jiahao Zhou, Wei Ding, Liuyi Ren, Siyuan Yang, Ye Zhang","doi":"10.3390/ma18061330","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the chemically supported ionic liquids (CSILs) were synthesized by ultrasound irradiation (UI) to improve the preparation process and further strengthen the adsorption performance of CSILs towards vanadium (V). The impacts of UI and conventional mechanic stirring (CMS) on the synthesis and adsorption characteristics of polystyrene [1-butyl-3-methylimidazolium][nitrate] (PS[C<sub>4</sub>mim][NO<sub>3</sub>]) were comparatively investigated. The experimental results demonstrate that ultrasound can dramatically shorten the preparation time from 1920 min to 15 min, and HNO<sub>3</sub> dosage is reduced by 15.79%. Under the same adsorption conditions, the CSILs synthesized by UI achieve the maximal adsorption capacity towards vanadium (V) as 248.95 mg/g at 150 min, while the CSILs processed by CMS reach 223.90 mg/g at 105 min. Particularly, the adsorption capacity of CSILs synthesized by UI can be maintained as 96.42% of the initial value after 10 cycles of adsorption-desorption, while that of CSILs processed by CMS maintain as 94.87%. The adsorption isotherm and kinetics fitting demonstrate that vanadium (V) adsorption by two CSILs is dominated by chemisorption as a single molecular layer. Additionally, the adsorption reaction of vanadium (V) by these two CSILs are both endothermic, and entropy increases. Fourier transform infrared, scanning electron microscopy, and energy spectrometry analyses prove that PS[C<sub>4</sub>mim][NO<sub>3</sub>] is successfully prepared by UI and CMS methods, and ultrasound waves will not destroy the intact spherical structure of the support resins. The current work provides a novel insight for the efficient synthesis of CSILs, which is also a potential technique for improving the adsorption performance of the adsorbents towards valuable metals.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943831/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient Ultrasound-Assisted Synthesis of Chemically Supported Anionic Functional Group Ionic Liquids and Its Enhanced Adsorption Performance Towards Vanadium (V).\",\"authors\":\"Bo Chen, Shenxu Bao, Yimin Zhang, Jiahao Zhou, Wei Ding, Liuyi Ren, Siyuan Yang, Ye Zhang\",\"doi\":\"10.3390/ma18061330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, the chemically supported ionic liquids (CSILs) were synthesized by ultrasound irradiation (UI) to improve the preparation process and further strengthen the adsorption performance of CSILs towards vanadium (V). The impacts of UI and conventional mechanic stirring (CMS) on the synthesis and adsorption characteristics of polystyrene [1-butyl-3-methylimidazolium][nitrate] (PS[C<sub>4</sub>mim][NO<sub>3</sub>]) were comparatively investigated. The experimental results demonstrate that ultrasound can dramatically shorten the preparation time from 1920 min to 15 min, and HNO<sub>3</sub> dosage is reduced by 15.79%. Under the same adsorption conditions, the CSILs synthesized by UI achieve the maximal adsorption capacity towards vanadium (V) as 248.95 mg/g at 150 min, while the CSILs processed by CMS reach 223.90 mg/g at 105 min. Particularly, the adsorption capacity of CSILs synthesized by UI can be maintained as 96.42% of the initial value after 10 cycles of adsorption-desorption, while that of CSILs processed by CMS maintain as 94.87%. The adsorption isotherm and kinetics fitting demonstrate that vanadium (V) adsorption by two CSILs is dominated by chemisorption as a single molecular layer. Additionally, the adsorption reaction of vanadium (V) by these two CSILs are both endothermic, and entropy increases. Fourier transform infrared, scanning electron microscopy, and energy spectrometry analyses prove that PS[C<sub>4</sub>mim][NO<sub>3</sub>] is successfully prepared by UI and CMS methods, and ultrasound waves will not destroy the intact spherical structure of the support resins. The current work provides a novel insight for the efficient synthesis of CSILs, which is also a potential technique for improving the adsorption performance of the adsorbents towards valuable metals.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 6\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943831/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18061330\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061330","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Efficient Ultrasound-Assisted Synthesis of Chemically Supported Anionic Functional Group Ionic Liquids and Its Enhanced Adsorption Performance Towards Vanadium (V).
In this study, the chemically supported ionic liquids (CSILs) were synthesized by ultrasound irradiation (UI) to improve the preparation process and further strengthen the adsorption performance of CSILs towards vanadium (V). The impacts of UI and conventional mechanic stirring (CMS) on the synthesis and adsorption characteristics of polystyrene [1-butyl-3-methylimidazolium][nitrate] (PS[C4mim][NO3]) were comparatively investigated. The experimental results demonstrate that ultrasound can dramatically shorten the preparation time from 1920 min to 15 min, and HNO3 dosage is reduced by 15.79%. Under the same adsorption conditions, the CSILs synthesized by UI achieve the maximal adsorption capacity towards vanadium (V) as 248.95 mg/g at 150 min, while the CSILs processed by CMS reach 223.90 mg/g at 105 min. Particularly, the adsorption capacity of CSILs synthesized by UI can be maintained as 96.42% of the initial value after 10 cycles of adsorption-desorption, while that of CSILs processed by CMS maintain as 94.87%. The adsorption isotherm and kinetics fitting demonstrate that vanadium (V) adsorption by two CSILs is dominated by chemisorption as a single molecular layer. Additionally, the adsorption reaction of vanadium (V) by these two CSILs are both endothermic, and entropy increases. Fourier transform infrared, scanning electron microscopy, and energy spectrometry analyses prove that PS[C4mim][NO3] is successfully prepared by UI and CMS methods, and ultrasound waves will not destroy the intact spherical structure of the support resins. The current work provides a novel insight for the efficient synthesis of CSILs, which is also a potential technique for improving the adsorption performance of the adsorbents towards valuable metals.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.