{"title":"连杆惯性力的数值分析及其对应力形成的影响。","authors":"Andrzej Chmielowiec, Weronika Woś, Jan Czyżewski","doi":"10.3390/ma18061385","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a comprehensive model for the inertia force field acting on a moving connecting rod. The derived formulas enable the accurate calculation of resultant inertia forces and their distribution on individual components for finite element analysis (FEA). The method applies to symmetrical and complex-shaped connecting rods, addressing challenges in modeling forces for asymmetrical designs. This work advances the precision of stress and vibration modeling in connecting rods, crucial for tribology and reliability studies. By improving the understanding of wear and failure mechanisms in reciprocating systems, it supports design optimization. The article presents the application of the proposed computational methods using three materials typically used for connecting rod construction: 42CrMo4, aluminum 2618, and Ti6Al4V. The presented results demonstrate how the material selection influences the total inertia force and the resulting stresses within the material. The numerical results are presented based on simulations conducted for two connecting rods of different sizes, operating at extremely different rotational speeds. The conducted analyses show that in the examined cases, rotational speed is the key factor influencing inertia stresses. The implementation, based on Open Source tools, allows a numerical analysis of inertia forces and stresses, with all the methods and models available in an open repository.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943893/pdf/","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis of Inertia Forces in the Connecting Rod and Their Impact on Stress Formation.\",\"authors\":\"Andrzej Chmielowiec, Weronika Woś, Jan Czyżewski\",\"doi\":\"10.3390/ma18061385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a comprehensive model for the inertia force field acting on a moving connecting rod. The derived formulas enable the accurate calculation of resultant inertia forces and their distribution on individual components for finite element analysis (FEA). The method applies to symmetrical and complex-shaped connecting rods, addressing challenges in modeling forces for asymmetrical designs. This work advances the precision of stress and vibration modeling in connecting rods, crucial for tribology and reliability studies. By improving the understanding of wear and failure mechanisms in reciprocating systems, it supports design optimization. The article presents the application of the proposed computational methods using three materials typically used for connecting rod construction: 42CrMo4, aluminum 2618, and Ti6Al4V. The presented results demonstrate how the material selection influences the total inertia force and the resulting stresses within the material. The numerical results are presented based on simulations conducted for two connecting rods of different sizes, operating at extremely different rotational speeds. The conducted analyses show that in the examined cases, rotational speed is the key factor influencing inertia stresses. The implementation, based on Open Source tools, allows a numerical analysis of inertia forces and stresses, with all the methods and models available in an open repository.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 6\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943893/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18061385\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061385","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Numerical Analysis of Inertia Forces in the Connecting Rod and Their Impact on Stress Formation.
This paper presents a comprehensive model for the inertia force field acting on a moving connecting rod. The derived formulas enable the accurate calculation of resultant inertia forces and their distribution on individual components for finite element analysis (FEA). The method applies to symmetrical and complex-shaped connecting rods, addressing challenges in modeling forces for asymmetrical designs. This work advances the precision of stress and vibration modeling in connecting rods, crucial for tribology and reliability studies. By improving the understanding of wear and failure mechanisms in reciprocating systems, it supports design optimization. The article presents the application of the proposed computational methods using three materials typically used for connecting rod construction: 42CrMo4, aluminum 2618, and Ti6Al4V. The presented results demonstrate how the material selection influences the total inertia force and the resulting stresses within the material. The numerical results are presented based on simulations conducted for two connecting rods of different sizes, operating at extremely different rotational speeds. The conducted analyses show that in the examined cases, rotational speed is the key factor influencing inertia stresses. The implementation, based on Open Source tools, allows a numerical analysis of inertia forces and stresses, with all the methods and models available in an open repository.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.