一种新型ⅱ型自供氢光引发剂用于抗蠕变交联聚乙烯薄膜。

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-03-16 DOI:10.3390/ma18061313
Fei Yang, Zhaoyuan Jing, Yingqiu Wang, Guodong Jiang
{"title":"一种新型ⅱ型自供氢光引发剂用于抗蠕变交联聚乙烯薄膜。","authors":"Fei Yang, Zhaoyuan Jing, Yingqiu Wang, Guodong Jiang","doi":"10.3390/ma18061313","DOIUrl":null,"url":null,"abstract":"<p><p>Two macromolecular photoinitiators, bis(4-benzoylphenyl) malonate (BPMD) and bis(4-benzoylphenyl) 3,3'-(piperazine-1,4-diyl)bis(3-oxopropanoate) (DBPMD), were successfully synthesized from 4-hydroxybenzophenone (4-BP), malonyl chloride, and anhydrous piperazine. Structural characterization using Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance spectroscopy (<sup>1</sup>H NMR) confirmed the expected molecular framework. Ultraviolet (UV) absorption spectroscopy revealed that BPMD and DBPMD exhibited enhanced molar extinction coefficients and red-shifted absorption maxima compared to 4-BP. Migration studies in high-density polyethylene (HDPE) demonstrated significantly lower diffusion rates for BPMD and DBPMD than for 4-BP, with DBPMD exhibiting superior photoinitiation efficiency even in the absence of amine-based activators. Photoinitiation performance, photocrosslinking kinetics, and mechanical evaluations indicated that both BPMD and DBPMD enabled efficient UV-initiated crosslinking, leading to improved tensile strength and creep resistance in polyethylene films. These findings highlight the potential of BPMD and DBPMD as advanced photoinitiators for high-performance UV-crosslinked polyethylene systems.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943914/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Novel Type II Photoinitiator with Self-Supplied Hydrogen for Anti-Creep Crosslinking Polyethylene Film.\",\"authors\":\"Fei Yang, Zhaoyuan Jing, Yingqiu Wang, Guodong Jiang\",\"doi\":\"10.3390/ma18061313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two macromolecular photoinitiators, bis(4-benzoylphenyl) malonate (BPMD) and bis(4-benzoylphenyl) 3,3'-(piperazine-1,4-diyl)bis(3-oxopropanoate) (DBPMD), were successfully synthesized from 4-hydroxybenzophenone (4-BP), malonyl chloride, and anhydrous piperazine. Structural characterization using Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance spectroscopy (<sup>1</sup>H NMR) confirmed the expected molecular framework. Ultraviolet (UV) absorption spectroscopy revealed that BPMD and DBPMD exhibited enhanced molar extinction coefficients and red-shifted absorption maxima compared to 4-BP. Migration studies in high-density polyethylene (HDPE) demonstrated significantly lower diffusion rates for BPMD and DBPMD than for 4-BP, with DBPMD exhibiting superior photoinitiation efficiency even in the absence of amine-based activators. Photoinitiation performance, photocrosslinking kinetics, and mechanical evaluations indicated that both BPMD and DBPMD enabled efficient UV-initiated crosslinking, leading to improved tensile strength and creep resistance in polyethylene films. These findings highlight the potential of BPMD and DBPMD as advanced photoinitiators for high-performance UV-crosslinked polyethylene systems.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 6\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943914/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18061313\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061313","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

以4-羟基苯甲酮(4-BP)、丙二酰氯和无水哌嗪为原料,成功合成了双(4-苯甲酰苯基)丙二酸酯(BPMD)和双(4-苯甲酰苯基)3,3′-(哌嗪-1,4-二基)双(3-氧丙酸酯)两个大分子光引发剂。利用傅里叶变换红外光谱(FTIR)和质子核磁共振光谱(1H NMR)对其结构进行表征,证实了预期的分子框架。紫外吸收光谱显示,与4-BP相比,BPMD和DBPMD的摩尔消光系数和红移吸收最大值均有所提高。高密度聚乙烯(HDPE)中的迁移研究表明,BPMD和DBPMD的扩散速率明显低于4-BP,即使在没有胺基活化剂的情况下,DBPMD也表现出更高的光引发效率。光引发性能、光交联动力学和力学评估表明,BPMD和DBPMD都能实现高效的紫外光引发交联,从而提高聚乙烯薄膜的拉伸强度和抗蠕变性能。这些发现突出了BPMD和DBPMD作为高性能紫外交联聚乙烯体系的先进光引发剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Type II Photoinitiator with Self-Supplied Hydrogen for Anti-Creep Crosslinking Polyethylene Film.

Two macromolecular photoinitiators, bis(4-benzoylphenyl) malonate (BPMD) and bis(4-benzoylphenyl) 3,3'-(piperazine-1,4-diyl)bis(3-oxopropanoate) (DBPMD), were successfully synthesized from 4-hydroxybenzophenone (4-BP), malonyl chloride, and anhydrous piperazine. Structural characterization using Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance spectroscopy (1H NMR) confirmed the expected molecular framework. Ultraviolet (UV) absorption spectroscopy revealed that BPMD and DBPMD exhibited enhanced molar extinction coefficients and red-shifted absorption maxima compared to 4-BP. Migration studies in high-density polyethylene (HDPE) demonstrated significantly lower diffusion rates for BPMD and DBPMD than for 4-BP, with DBPMD exhibiting superior photoinitiation efficiency even in the absence of amine-based activators. Photoinitiation performance, photocrosslinking kinetics, and mechanical evaluations indicated that both BPMD and DBPMD enabled efficient UV-initiated crosslinking, leading to improved tensile strength and creep resistance in polyethylene films. These findings highlight the potential of BPMD and DBPMD as advanced photoinitiators for high-performance UV-crosslinked polyethylene systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信