超细15 μm不锈钢丝的应用特性:显微组织、电疲劳和成球机理

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-03-12 DOI:10.3390/mi16030326
Hsiang-Chi Yang, Fei-Yi Hung, Bo-Ding Wu, Yi-Tze Chang
{"title":"超细15 μm不锈钢丝的应用特性:显微组织、电疲劳和成球机理","authors":"Hsiang-Chi Yang, Fei-Yi Hung, Bo-Ding Wu, Yi-Tze Chang","doi":"10.3390/mi16030326","DOIUrl":null,"url":null,"abstract":"<p><p>Stainless steel wires exhibit excellent mechanical properties and are widely used in engineering applications. This study fabricates 15 μm stainless steel wires for potential integration into wire bonding technology for electronic packaging. The research explores the microstructural characteristics, electrical conduction mechanisms, and ball formation behavior of ultra-fine stainless-steel wires to assess their feasibility for wire bonding applications. Results indicate that both 15 μm and 30 μm stainless steel wires exhibit elongated grains with outstanding tensile strength and hardness. Compared to the 30 μm wires, the 15 μm wires undergo more pronounced work hardening, leading to higher tensile strength and resistance. This study investigates the differences between vacuum and electrified annealing processes to address the work hardening and ductility issues in stainless steel wires. Results confirm that the hardness of the original wire significantly decreases after vacuum annealing at 780 °C for 15 min. Furthermore, using the derived equation, T=IV2.3085×10-3+25, the annealing temperature of 780 °C is converted into an equivalent current, and electrify annealing is conducted under a condition of 0.08 A for 15 min. The annealed wires exhibit a softening effect and enhance ductility. Furthermore, due to stored deformation energy and recrystallization effects, the electrical fatigue life of 15 μm stainless steel wires is approximately 300 cycles. After electrifying annealing, the base microstructure becomes more homogeneous due to thermal effects, reducing fatigue life to around 150 cycles. However, due to the softening effect, the annealed wires make the EFO process easier and minimize solidification segregation in the free air ball (FAB) microstructure, demonstrating their potential for electronic packaging applications.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946405/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application Characteristics of Ultra-Fine 15 μm Stainless Steel Wires: Microstructures, Electrical Fatigue, and Ball Formation Mechanisms.\",\"authors\":\"Hsiang-Chi Yang, Fei-Yi Hung, Bo-Ding Wu, Yi-Tze Chang\",\"doi\":\"10.3390/mi16030326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stainless steel wires exhibit excellent mechanical properties and are widely used in engineering applications. This study fabricates 15 μm stainless steel wires for potential integration into wire bonding technology for electronic packaging. The research explores the microstructural characteristics, electrical conduction mechanisms, and ball formation behavior of ultra-fine stainless-steel wires to assess their feasibility for wire bonding applications. Results indicate that both 15 μm and 30 μm stainless steel wires exhibit elongated grains with outstanding tensile strength and hardness. Compared to the 30 μm wires, the 15 μm wires undergo more pronounced work hardening, leading to higher tensile strength and resistance. This study investigates the differences between vacuum and electrified annealing processes to address the work hardening and ductility issues in stainless steel wires. Results confirm that the hardness of the original wire significantly decreases after vacuum annealing at 780 °C for 15 min. Furthermore, using the derived equation, T=IV2.3085×10-3+25, the annealing temperature of 780 °C is converted into an equivalent current, and electrify annealing is conducted under a condition of 0.08 A for 15 min. The annealed wires exhibit a softening effect and enhance ductility. Furthermore, due to stored deformation energy and recrystallization effects, the electrical fatigue life of 15 μm stainless steel wires is approximately 300 cycles. After electrifying annealing, the base microstructure becomes more homogeneous due to thermal effects, reducing fatigue life to around 150 cycles. However, due to the softening effect, the annealed wires make the EFO process easier and minimize solidification segregation in the free air ball (FAB) microstructure, demonstrating their potential for electronic packaging applications.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946405/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16030326\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030326","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

不锈钢丝具有优良的机械性能,在工程上得到了广泛的应用。本研究制造了15 μm不锈钢线,用于电子封装的线键合技术。本研究探讨了超细不锈钢丝的显微组织特征、导电机制和成球行为,以评估其在金属键合应用中的可行性。结果表明:15 μm和30 μm不锈钢丝均表现出拉长的晶粒,具有优异的抗拉强度和硬度;与30 μm线相比,15 μm线具有更明显的加工硬化,从而具有更高的抗拉强度和电阻。本研究探讨了真空退火和电气化退火工艺的差异,以解决不锈钢丝的加工硬化和延展性问题。结果证实,780℃真空退火15 min后,原丝的硬度显著降低。利用推导出的公式T=IV2.3085×10-3+25,将780℃的退火温度转换为等效电流,在0.08 a的条件下通电退火15 min,退火后的丝具有软化效果,延展性增强。此外,由于储存的变形能和再结晶效应,15 μm不锈钢丝的电疲劳寿命约为300次。通电退火后,由于热效应,基体组织变得更加均匀,疲劳寿命降低到150次左右。然而,由于软化效应,退火线使EFO过程更容易,并最大限度地减少了自由空气球(FAB)微观结构中的凝固偏析,显示了它们在电子封装应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application Characteristics of Ultra-Fine 15 μm Stainless Steel Wires: Microstructures, Electrical Fatigue, and Ball Formation Mechanisms.

Stainless steel wires exhibit excellent mechanical properties and are widely used in engineering applications. This study fabricates 15 μm stainless steel wires for potential integration into wire bonding technology for electronic packaging. The research explores the microstructural characteristics, electrical conduction mechanisms, and ball formation behavior of ultra-fine stainless-steel wires to assess their feasibility for wire bonding applications. Results indicate that both 15 μm and 30 μm stainless steel wires exhibit elongated grains with outstanding tensile strength and hardness. Compared to the 30 μm wires, the 15 μm wires undergo more pronounced work hardening, leading to higher tensile strength and resistance. This study investigates the differences between vacuum and electrified annealing processes to address the work hardening and ductility issues in stainless steel wires. Results confirm that the hardness of the original wire significantly decreases after vacuum annealing at 780 °C for 15 min. Furthermore, using the derived equation, T=IV2.3085×10-3+25, the annealing temperature of 780 °C is converted into an equivalent current, and electrify annealing is conducted under a condition of 0.08 A for 15 min. The annealed wires exhibit a softening effect and enhance ductility. Furthermore, due to stored deformation energy and recrystallization effects, the electrical fatigue life of 15 μm stainless steel wires is approximately 300 cycles. After electrifying annealing, the base microstructure becomes more homogeneous due to thermal effects, reducing fatigue life to around 150 cycles. However, due to the softening effect, the annealed wires make the EFO process easier and minimize solidification segregation in the free air ball (FAB) microstructure, demonstrating their potential for electronic packaging applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信