利用市售吸附剂去除全氟烷基和多氟烷基物质。

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-03-15 DOI:10.3390/ma18061299
Zhiming Zhang, Sevda Joudiazar, Anshuman Satpathy, Eustace Fernando, Roxana Rahmati, Junchul Kim, Giacomo de Falco, Rupali Datta, Dibyendu Sarkar
{"title":"利用市售吸附剂去除全氟烷基和多氟烷基物质。","authors":"Zhiming Zhang, Sevda Joudiazar, Anshuman Satpathy, Eustace Fernando, Roxana Rahmati, Junchul Kim, Giacomo de Falco, Rupali Datta, Dibyendu Sarkar","doi":"10.3390/ma18061299","DOIUrl":null,"url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants of growing environmental and human health concern, widely detected across various environmental compartments. Effective remediation strategies are essential to mitigate their widespread impacts. This study compared the performance of two types of commercially available sorbent materials, granular activated carbon (GAC, Filtrasorb-400) and organoclays (OC-200, and modified organoclays Fluoro-sorb-100 and Fluoro-sorb-200) for the removal of three representative PFAS compounds: perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonic acid (PFOS) from water. Both organoclays and modified organoclays outperformed GAC, likely due to electrostatic interactions between the anionic PFAS compounds and the cationic functional groups of the modified organoclays. A pseudo-second-order kinetic model best described the rapid sorption kinetics of PFOA, PFNA, and PFOS. For PFOA, OC-200 demonstrated the highest adsorption capacities (q<sub>max</sub> = 47.17 µg/g). For PFNA and PFOS, Fluoro-sorb-100 was the most effective sorbent, with q<sub>max</sub> values at 99.01 µg/g and 65.79 µg/g, respectively. Desorption studies indicated that the sorption of the three PFAS compounds on these commercially available sorbents was largely irreversible. This study highlights the effectiveness and sorption capacities of different types of commercial sorbents for PFAS removal and offers valuable insights into the selection of reactive media for PFAS removal from water under environmentally relevant conditions.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943809/pdf/","citationCount":"0","resultStr":"{\"title\":\"Removal of Per- and Polyfluoroalkyl Substances Using Commercially Available Sorbents.\",\"authors\":\"Zhiming Zhang, Sevda Joudiazar, Anshuman Satpathy, Eustace Fernando, Roxana Rahmati, Junchul Kim, Giacomo de Falco, Rupali Datta, Dibyendu Sarkar\",\"doi\":\"10.3390/ma18061299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants of growing environmental and human health concern, widely detected across various environmental compartments. Effective remediation strategies are essential to mitigate their widespread impacts. This study compared the performance of two types of commercially available sorbent materials, granular activated carbon (GAC, Filtrasorb-400) and organoclays (OC-200, and modified organoclays Fluoro-sorb-100 and Fluoro-sorb-200) for the removal of three representative PFAS compounds: perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonic acid (PFOS) from water. Both organoclays and modified organoclays outperformed GAC, likely due to electrostatic interactions between the anionic PFAS compounds and the cationic functional groups of the modified organoclays. A pseudo-second-order kinetic model best described the rapid sorption kinetics of PFOA, PFNA, and PFOS. For PFOA, OC-200 demonstrated the highest adsorption capacities (q<sub>max</sub> = 47.17 µg/g). For PFNA and PFOS, Fluoro-sorb-100 was the most effective sorbent, with q<sub>max</sub> values at 99.01 µg/g and 65.79 µg/g, respectively. Desorption studies indicated that the sorption of the three PFAS compounds on these commercially available sorbents was largely irreversible. This study highlights the effectiveness and sorption capacities of different types of commercial sorbents for PFAS removal and offers valuable insights into the selection of reactive media for PFAS removal from water under environmentally relevant conditions.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 6\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943809/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18061299\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061299","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

全氟烷基和多氟烷基物质(PFAS)是日益引起环境和人类健康关注的持久性有机污染物,广泛存在于各种环境区域。有效的补救策略对于减轻其广泛影响至关重要。本研究比较了两种类型的市售吸附材料,颗粒活性炭(GAC, Filtrasorb-400)和有机粘土(OC-200,以及改性有机粘土Fluoro-sorb-100和Fluoro-sorb-200)去除水中三种具有代表性的PFAS化合物:全氟辛酸(PFOA),全氟无机酸(PFNA)和全氟辛烷磺酸(PFOS)的性能。有机粘土和改性有机粘土的性能都优于GAC,这可能是由于阴离子PFAS化合物与改性有机粘土的阳离子官能团之间的静电相互作用。伪二级动力学模型最好地描述了PFOA、PFNA和PFOS的快速吸附动力学。OC-200对PFOA的吸附量最高(qmax = 47.17µg/g)。对于PFNA和PFOS, Fluoro-sorb-100是最有效的吸附剂,qmax分别为99.01µg/g和65.79µg/g。解吸研究表明,三种PFAS化合物在这些市售吸附剂上的吸附在很大程度上是不可逆的。本研究强调了不同类型的商业吸附剂去除PFAS的有效性和吸附能力,并为在环境相关条件下从水中去除PFAS的反应介质的选择提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Removal of Per- and Polyfluoroalkyl Substances Using Commercially Available Sorbents.

Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants of growing environmental and human health concern, widely detected across various environmental compartments. Effective remediation strategies are essential to mitigate their widespread impacts. This study compared the performance of two types of commercially available sorbent materials, granular activated carbon (GAC, Filtrasorb-400) and organoclays (OC-200, and modified organoclays Fluoro-sorb-100 and Fluoro-sorb-200) for the removal of three representative PFAS compounds: perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonic acid (PFOS) from water. Both organoclays and modified organoclays outperformed GAC, likely due to electrostatic interactions between the anionic PFAS compounds and the cationic functional groups of the modified organoclays. A pseudo-second-order kinetic model best described the rapid sorption kinetics of PFOA, PFNA, and PFOS. For PFOA, OC-200 demonstrated the highest adsorption capacities (qmax = 47.17 µg/g). For PFNA and PFOS, Fluoro-sorb-100 was the most effective sorbent, with qmax values at 99.01 µg/g and 65.79 µg/g, respectively. Desorption studies indicated that the sorption of the three PFAS compounds on these commercially available sorbents was largely irreversible. This study highlights the effectiveness and sorption capacities of different types of commercial sorbents for PFAS removal and offers valuable insights into the selection of reactive media for PFAS removal from water under environmentally relevant conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信