新一代宏基因组测序、Sanger测序和常规培养检测下呼吸道感染常见病原菌的比较分析

IF 4.1 2区 生物学 Q2 MICROBIOLOGY
Qiaolian Yi, Ge Zhang, Tong Wang, Jin Li, Wei Kang, Jingjia Zhang, Yali Liu, Yingchun Xu
{"title":"新一代宏基因组测序、Sanger测序和常规培养检测下呼吸道感染常见病原菌的比较分析","authors":"Qiaolian Yi, Ge Zhang, Tong Wang, Jin Li, Wei Kang, Jingjia Zhang, Yali Liu, Yingchun Xu","doi":"10.3390/microorganisms13030682","DOIUrl":null,"url":null,"abstract":"<p><p>Metagenomic next-generation sequencing (mNGS) has emerged as a revolutionary tool for infectious disease diagnostics. The necessity of mNGS in real-world clinical practice for common Lower Respiratory Tract Infections (LRTI) needs further evaluation. A total of 184 bronchoalveolar lavage fluid (BALF) samples and 322 sputa associated with LRTI were fully examined. The detection performance was compared between mNGS and standard microbiology culture, using Sanger sequencing as the reference method. 52.05% (165/317) of sputa showed identical results for all three methods. Compared to Sanger sequencing, the same results obtained by mNGS were 88.20% (284/322). In 2.80% (9/322) of cases, Sanger sequencing detected more microorganisms, while mNGS detected more in 9% (29/322) of cases. For BALF, 49.41% (85/172) of cases showed identical results for all three methods. In 91.30% (168/184) of cases, identical results were produced by both mNGS and Sanger sequencing. mNGS detected more species in 7.61% (14/184) of cases, whereas in 2.80% (2/184) instances, the Sanger sequencing detected more microorganisms than mNGS. In the 184 BALF samples, 66 samples were identified as having co-infections by mNGS, Sanger sequencing identified 64 samples, and cultures identified 22 samples. Our study demonstrates that mNGS offers a significant advantage over conventional culture methods in detecting co-infections. For common bacterial pathogens, conventional culture methods are sufficient for detection. However, mNGS provides comprehensive pathogen detection and is particularly useful for identifying rare and difficult-to-culture pathogens.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 3","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944894/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Metagenomic Next-Generation Sequencing, Sanger Sequencing, and Conventional Culture for Detecting Common Pathogens Causing Lower Respiratory Tract Infections in Clinical Samples.\",\"authors\":\"Qiaolian Yi, Ge Zhang, Tong Wang, Jin Li, Wei Kang, Jingjia Zhang, Yali Liu, Yingchun Xu\",\"doi\":\"10.3390/microorganisms13030682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metagenomic next-generation sequencing (mNGS) has emerged as a revolutionary tool for infectious disease diagnostics. The necessity of mNGS in real-world clinical practice for common Lower Respiratory Tract Infections (LRTI) needs further evaluation. A total of 184 bronchoalveolar lavage fluid (BALF) samples and 322 sputa associated with LRTI were fully examined. The detection performance was compared between mNGS and standard microbiology culture, using Sanger sequencing as the reference method. 52.05% (165/317) of sputa showed identical results for all three methods. Compared to Sanger sequencing, the same results obtained by mNGS were 88.20% (284/322). In 2.80% (9/322) of cases, Sanger sequencing detected more microorganisms, while mNGS detected more in 9% (29/322) of cases. For BALF, 49.41% (85/172) of cases showed identical results for all three methods. In 91.30% (168/184) of cases, identical results were produced by both mNGS and Sanger sequencing. mNGS detected more species in 7.61% (14/184) of cases, whereas in 2.80% (2/184) instances, the Sanger sequencing detected more microorganisms than mNGS. In the 184 BALF samples, 66 samples were identified as having co-infections by mNGS, Sanger sequencing identified 64 samples, and cultures identified 22 samples. Our study demonstrates that mNGS offers a significant advantage over conventional culture methods in detecting co-infections. For common bacterial pathogens, conventional culture methods are sufficient for detection. However, mNGS provides comprehensive pathogen detection and is particularly useful for identifying rare and difficult-to-culture pathogens.</p>\",\"PeriodicalId\":18667,\"journal\":{\"name\":\"Microorganisms\",\"volume\":\"13 3\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944894/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microorganisms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/microorganisms13030682\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13030682","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

新一代宏基因组测序(mNGS)已成为传染病诊断的革命性工具。mgs在下呼吸道感染(LRTI)临床实践中的必要性有待进一步评估。对184例支气管肺泡灌洗液(BALF)和322例与LRTI相关的痰液进行了全面检查。以Sanger测序法为参照,比较mNGS与标准微生物培养的检测性能。52.05%(165/317)的痰液三种方法结果相同。与Sanger测序相比,mNGS获得的结果相同,为88.20%(284/322)。在2.80%(9/322)的病例中,Sanger测序检出较多微生物,而mNGS检出较多微生物的病例占9%(29/322)。对于BALF, 49.41%(85/172)的病例显示三种方法的结果相同。在91.30%(168/184)的病例中,mNGS和Sanger测序的结果相同。在7.61%(14/184)的病例中,mNGS检出更多的微生物,而在2.80%(2/184)的病例中,Sanger测序检出的微生物多于mNGS。在184份BALF样本中,有66份样本被mNGS鉴定为共感染,Sanger测序鉴定了64份样本,培养鉴定了22份样本。我们的研究表明,与传统培养方法相比,mNGS在检测合并感染方面具有显著优势。对于常见的细菌性病原体,传统的培养方法足以检测。然而,mNGS提供了全面的病原体检测,特别适用于鉴定罕见和难以培养的病原体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Analysis of Metagenomic Next-Generation Sequencing, Sanger Sequencing, and Conventional Culture for Detecting Common Pathogens Causing Lower Respiratory Tract Infections in Clinical Samples.

Metagenomic next-generation sequencing (mNGS) has emerged as a revolutionary tool for infectious disease diagnostics. The necessity of mNGS in real-world clinical practice for common Lower Respiratory Tract Infections (LRTI) needs further evaluation. A total of 184 bronchoalveolar lavage fluid (BALF) samples and 322 sputa associated with LRTI were fully examined. The detection performance was compared between mNGS and standard microbiology culture, using Sanger sequencing as the reference method. 52.05% (165/317) of sputa showed identical results for all three methods. Compared to Sanger sequencing, the same results obtained by mNGS were 88.20% (284/322). In 2.80% (9/322) of cases, Sanger sequencing detected more microorganisms, while mNGS detected more in 9% (29/322) of cases. For BALF, 49.41% (85/172) of cases showed identical results for all three methods. In 91.30% (168/184) of cases, identical results were produced by both mNGS and Sanger sequencing. mNGS detected more species in 7.61% (14/184) of cases, whereas in 2.80% (2/184) instances, the Sanger sequencing detected more microorganisms than mNGS. In the 184 BALF samples, 66 samples were identified as having co-infections by mNGS, Sanger sequencing identified 64 samples, and cultures identified 22 samples. Our study demonstrates that mNGS offers a significant advantage over conventional culture methods in detecting co-infections. For common bacterial pathogens, conventional culture methods are sufficient for detection. However, mNGS provides comprehensive pathogen detection and is particularly useful for identifying rare and difficult-to-culture pathogens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microorganisms
Microorganisms Medicine-Microbiology (medical)
CiteScore
7.40
自引率
6.70%
发文量
2168
审稿时长
20.03 days
期刊介绍: Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信