不同钢渣粉沥青胶料的微波敏感性及性能比较。

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-03-19 DOI:10.3390/ma18061348
Zeyu Geng, Weixiao Yu, Min Jiang, Yinghao Miao
{"title":"不同钢渣粉沥青胶料的微波敏感性及性能比较。","authors":"Zeyu Geng, Weixiao Yu, Min Jiang, Yinghao Miao","doi":"10.3390/ma18061348","DOIUrl":null,"url":null,"abstract":"<p><p>Steel slag is a common solid waste, but it has good microwave absorbing ability. The poor microwave sensitivity of asphalt mixture limits the development of microwave maintenance for asphalt pavement. Therefore, it is significant to apply steel slag to asphalt pavement. This study analyzes the difference in the microwave sensitivity and performance between the asphalt mastics with blast furnace slag powder (BFSP), converter slag powder (CSP), refined slag powder (RSP), and limestone powder (LP). First, the chemical composition of BFSP, CSP, RSP, and LP is analyzed by X-ray diffractometer (XRD) and X-ray fluorescence (XRF) tests. Then, the micromorphology characteristics of the asphalt mastic with BFSP, that with CSP, that with RSP, and that with LP are studied using atomic force microscope (AFM) tests. Finally, the rheological properties of the four asphalt mastics are investigated through dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. The results show that steel slag powder can effectively improve the microwave sensitivity of asphalt mastic. RSP and CSP can improve the anti-deformation ability of asphalt mastic. In addition, steel slag powders have an adverse effect on the low-temperature cracking resistance of asphalt mastic, but the creep strength and creep rate of asphalt mastic with steel slag powder are within a reasonable range. In general, steel slag powder as filler has great application potential in road engineering. However, it has a certain influence on the performance of asphalt mastic. It is necessary to carry out targeted selection in practical engineering.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943481/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of Microwave Sensitivity and Performance of Asphalt Mastic with Various Steel Slag Powders.\",\"authors\":\"Zeyu Geng, Weixiao Yu, Min Jiang, Yinghao Miao\",\"doi\":\"10.3390/ma18061348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Steel slag is a common solid waste, but it has good microwave absorbing ability. The poor microwave sensitivity of asphalt mixture limits the development of microwave maintenance for asphalt pavement. Therefore, it is significant to apply steel slag to asphalt pavement. This study analyzes the difference in the microwave sensitivity and performance between the asphalt mastics with blast furnace slag powder (BFSP), converter slag powder (CSP), refined slag powder (RSP), and limestone powder (LP). First, the chemical composition of BFSP, CSP, RSP, and LP is analyzed by X-ray diffractometer (XRD) and X-ray fluorescence (XRF) tests. Then, the micromorphology characteristics of the asphalt mastic with BFSP, that with CSP, that with RSP, and that with LP are studied using atomic force microscope (AFM) tests. Finally, the rheological properties of the four asphalt mastics are investigated through dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. The results show that steel slag powder can effectively improve the microwave sensitivity of asphalt mastic. RSP and CSP can improve the anti-deformation ability of asphalt mastic. In addition, steel slag powders have an adverse effect on the low-temperature cracking resistance of asphalt mastic, but the creep strength and creep rate of asphalt mastic with steel slag powder are within a reasonable range. In general, steel slag powder as filler has great application potential in road engineering. However, it has a certain influence on the performance of asphalt mastic. It is necessary to carry out targeted selection in practical engineering.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 6\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943481/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18061348\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061348","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钢渣是一种常见的固体废物,但它具有良好的微波吸收能力。沥青混合料的微波敏感性差,限制了沥青路面微波养护的发展。因此,将钢渣应用于沥青路面具有重要意义。本研究分析了高炉矿渣粉(BFSP)、转炉矿渣粉(CSP)、精炼矿渣粉(RSP)和石灰石粉(LP)沥青沥青的微波敏感性和性能差异。首先,通过x射线衍射仪(XRD)和x射线荧光(XRF)测试分析BFSP、CSP、RSP和LP的化学成分。然后,利用原子力显微镜(AFM)测试研究了BFSP、CSP、RSP和LP沥青胶粘剂的微观形貌特征。最后,通过动态剪切流变仪(DSR)和弯曲梁流变仪(BBR)试验研究了四种沥青砂浆的流变特性。结果表明,钢渣粉能有效提高沥青胶泥的微波敏感性。RSP和CSP可以提高沥青胶泥的抗变形能力。此外,钢渣粉对沥青胶泥的低温抗裂性能有不利影响,但加入钢渣粉的沥青胶泥的蠕变强度和蠕变速率均在合理范围内。钢渣粉作为填料在道路工程中具有很大的应用潜力。然而,它对沥青胶泥的性能有一定的影响。在实际工程中进行有针对性的选择是十分必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Microwave Sensitivity and Performance of Asphalt Mastic with Various Steel Slag Powders.

Steel slag is a common solid waste, but it has good microwave absorbing ability. The poor microwave sensitivity of asphalt mixture limits the development of microwave maintenance for asphalt pavement. Therefore, it is significant to apply steel slag to asphalt pavement. This study analyzes the difference in the microwave sensitivity and performance between the asphalt mastics with blast furnace slag powder (BFSP), converter slag powder (CSP), refined slag powder (RSP), and limestone powder (LP). First, the chemical composition of BFSP, CSP, RSP, and LP is analyzed by X-ray diffractometer (XRD) and X-ray fluorescence (XRF) tests. Then, the micromorphology characteristics of the asphalt mastic with BFSP, that with CSP, that with RSP, and that with LP are studied using atomic force microscope (AFM) tests. Finally, the rheological properties of the four asphalt mastics are investigated through dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. The results show that steel slag powder can effectively improve the microwave sensitivity of asphalt mastic. RSP and CSP can improve the anti-deformation ability of asphalt mastic. In addition, steel slag powders have an adverse effect on the low-temperature cracking resistance of asphalt mastic, but the creep strength and creep rate of asphalt mastic with steel slag powder are within a reasonable range. In general, steel slag powder as filler has great application potential in road engineering. However, it has a certain influence on the performance of asphalt mastic. It is necessary to carry out targeted selection in practical engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信