使用移动物体轨迹和led控制激活的安全高效脑机接口。

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-03-16 DOI:10.3390/mi16030340
Sefa Aydin, Mesut Melek, Levent Gökrem
{"title":"使用移动物体轨迹和led控制激活的安全高效脑机接口。","authors":"Sefa Aydin, Mesut Melek, Levent Gökrem","doi":"10.3390/mi16030340","DOIUrl":null,"url":null,"abstract":"<p><p>Nowadays, brain-computer interface (BCI) systems are frequently used to connect individuals who have lost their mobility with the outside world. These BCI systems enable individuals to control external devices using brain signals. However, these systems have certain disadvantages for users. This paper proposes a novel approach to minimize the disadvantages of visual stimuli on the eye health of system users in BCI systems employing visual evoked potential (VEP) and P300 methods. The approach employs moving objects with different trajectories instead of visual stimuli. It uses a light-emitting diode (LED) with a frequency of 7 Hz as a condition for the BCI system to be active. The LED is assigned to the system to prevent it from being triggered by any involuntary or independent eye movements of the user. Thus, the system user will be able to use a safe BCI system with a single visual stimulus that blinks on the side without needing to focus on any visual stimulus through moving balls. Data were recorded in two phases: when the LED was on and when the LED was off. The recorded data were processed using a Butterworth filter and the power spectral density (PSD) method. In the first classification phase, which was performed for the system to detect the LED in the background, the highest accuracy rate of 99.57% was achieved with the random forest (RF) classification algorithm. In the second classification phase, which involves classifying moving objects within the proposed approach, the highest accuracy rate of 97.89% and an information transfer rate (ITR) value of 36.75 (bits/min) were achieved using the RF classifier.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946446/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Safe and Efficient Brain-Computer Interface Using Moving Object Trajectories and LED-Controlled Activation.\",\"authors\":\"Sefa Aydin, Mesut Melek, Levent Gökrem\",\"doi\":\"10.3390/mi16030340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nowadays, brain-computer interface (BCI) systems are frequently used to connect individuals who have lost their mobility with the outside world. These BCI systems enable individuals to control external devices using brain signals. However, these systems have certain disadvantages for users. This paper proposes a novel approach to minimize the disadvantages of visual stimuli on the eye health of system users in BCI systems employing visual evoked potential (VEP) and P300 methods. The approach employs moving objects with different trajectories instead of visual stimuli. It uses a light-emitting diode (LED) with a frequency of 7 Hz as a condition for the BCI system to be active. The LED is assigned to the system to prevent it from being triggered by any involuntary or independent eye movements of the user. Thus, the system user will be able to use a safe BCI system with a single visual stimulus that blinks on the side without needing to focus on any visual stimulus through moving balls. Data were recorded in two phases: when the LED was on and when the LED was off. The recorded data were processed using a Butterworth filter and the power spectral density (PSD) method. In the first classification phase, which was performed for the system to detect the LED in the background, the highest accuracy rate of 99.57% was achieved with the random forest (RF) classification algorithm. In the second classification phase, which involves classifying moving objects within the proposed approach, the highest accuracy rate of 97.89% and an information transfer rate (ITR) value of 36.75 (bits/min) were achieved using the RF classifier.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946446/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16030340\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030340","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

目前,脑机接口(BCI)系统经常被用于连接失去行动能力的个体与外界的联系。这些脑机接口系统使个人能够使用大脑信号控制外部设备。然而,这些系统对用户来说有一定的缺点。本文提出了一种利用视觉诱发电位(VEP)和P300方法来减少视觉刺激对BCI系统用户眼睛健康的不利影响的新方法。该方法采用不同轨迹的移动物体,而不是视觉刺激。它使用频率为7赫兹的发光二极管(LED)作为BCI系统激活的条件。LED被分配到系统中,以防止它被用户的任何非自愿或独立的眼球运动触发。因此,系统用户将能够使用安全的BCI系统,该系统具有单个视觉刺激,在侧面闪烁,而无需通过移动球聚焦任何视觉刺激。数据记录在两个阶段:当LED打开和LED关闭时。使用巴特沃斯滤波和功率谱密度(PSD)方法对记录的数据进行处理。在系统检测背景LED的第一分类阶段,随机森林(random forest, RF)分类算法的准确率最高,达到99.57%。在第二阶段,对所提出方法中的运动物体进行分类,使用射频分类器实现了97.89%的最高准确率和36.75 (bits/min)的信息传输速率(ITR)值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Safe and Efficient Brain-Computer Interface Using Moving Object Trajectories and LED-Controlled Activation.

Nowadays, brain-computer interface (BCI) systems are frequently used to connect individuals who have lost their mobility with the outside world. These BCI systems enable individuals to control external devices using brain signals. However, these systems have certain disadvantages for users. This paper proposes a novel approach to minimize the disadvantages of visual stimuli on the eye health of system users in BCI systems employing visual evoked potential (VEP) and P300 methods. The approach employs moving objects with different trajectories instead of visual stimuli. It uses a light-emitting diode (LED) with a frequency of 7 Hz as a condition for the BCI system to be active. The LED is assigned to the system to prevent it from being triggered by any involuntary or independent eye movements of the user. Thus, the system user will be able to use a safe BCI system with a single visual stimulus that blinks on the side without needing to focus on any visual stimulus through moving balls. Data were recorded in two phases: when the LED was on and when the LED was off. The recorded data were processed using a Butterworth filter and the power spectral density (PSD) method. In the first classification phase, which was performed for the system to detect the LED in the background, the highest accuracy rate of 99.57% was achieved with the random forest (RF) classification algorithm. In the second classification phase, which involves classifying moving objects within the proposed approach, the highest accuracy rate of 97.89% and an information transfer rate (ITR) value of 36.75 (bits/min) were achieved using the RF classifier.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信