Danijela Marovic, Matej Par, Paulina Daničić, Ana Marošević, Gloria Bojo, Marta Alerić, Svenia Antić, Krunoslav Puljić, Ana Badovinac, Adrian C Shortall, Zrinka Tarle
{"title":"快速固化在体积填充复合材料温升、光透射和聚合动力学相互关系中的作用。","authors":"Danijela Marovic, Matej Par, Paulina Daničić, Ana Marošević, Gloria Bojo, Marta Alerić, Svenia Antić, Krunoslav Puljić, Ana Badovinac, Adrian C Shortall, Zrinka Tarle","doi":"10.3390/ijms26062803","DOIUrl":null,"url":null,"abstract":"<p><p>The first seconds of light curing are crucial for the development of most properties of dental composites, especially for the 3s high-irradiance curing. This study investigated the influence of rapid high-irradiance curing on temporal development of temperature, transmittance and conversion of bulk-fill composites. Four materials were tested: Filtek One (FO), Tetric PowerFill (PFill), Tetric PowerFlow (PFlow) and SDR flow+ (SDR+) and cured with three curing units (LCU): Valo Cordles, Bluephase PowerCure and Translux Wave in 3s (3 W/cm<sup>2</sup>), 10s (1 W/cm<sup>2</sup>) and 20s (1 W/cm<sup>2</sup>) curing protocols. Light transmittance was measured at 2 and 4 mm, while temperature rise and polymerisation kinetics were evaluated at 4 mm depth during 5 min. Both light transmittance and temperature rise were greatest for SDR+ > PFlow > PFill > FO. The 20s curing protocol resulted in the highest degree of conversion (DC) for all materials and LCUs, but also contributed to the greatest temperature rise. Rapid curing with the 3s protocol caused the lowest temperature rise and the shortest time to reach maximum temperature. The polymerisation and temperature kinetics were strongly dependent on the material. The DC of PFill was statistically similar for 3s, 10s or 20s curing with BPC. Rapid curing is only recommended for materials developed for this purpose.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 6","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942995/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Role of Rapid Curing on the Interrelationship Between Temperature Rise, Light Transmission, and Polymerisation Kinetics of Bulk-Fill Composites.\",\"authors\":\"Danijela Marovic, Matej Par, Paulina Daničić, Ana Marošević, Gloria Bojo, Marta Alerić, Svenia Antić, Krunoslav Puljić, Ana Badovinac, Adrian C Shortall, Zrinka Tarle\",\"doi\":\"10.3390/ijms26062803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The first seconds of light curing are crucial for the development of most properties of dental composites, especially for the 3s high-irradiance curing. This study investigated the influence of rapid high-irradiance curing on temporal development of temperature, transmittance and conversion of bulk-fill composites. Four materials were tested: Filtek One (FO), Tetric PowerFill (PFill), Tetric PowerFlow (PFlow) and SDR flow+ (SDR+) and cured with three curing units (LCU): Valo Cordles, Bluephase PowerCure and Translux Wave in 3s (3 W/cm<sup>2</sup>), 10s (1 W/cm<sup>2</sup>) and 20s (1 W/cm<sup>2</sup>) curing protocols. Light transmittance was measured at 2 and 4 mm, while temperature rise and polymerisation kinetics were evaluated at 4 mm depth during 5 min. Both light transmittance and temperature rise were greatest for SDR+ > PFlow > PFill > FO. The 20s curing protocol resulted in the highest degree of conversion (DC) for all materials and LCUs, but also contributed to the greatest temperature rise. Rapid curing with the 3s protocol caused the lowest temperature rise and the shortest time to reach maximum temperature. The polymerisation and temperature kinetics were strongly dependent on the material. The DC of PFill was statistically similar for 3s, 10s or 20s curing with BPC. Rapid curing is only recommended for materials developed for this purpose.</p>\",\"PeriodicalId\":14156,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":\"26 6\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942995/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms26062803\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26062803","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Role of Rapid Curing on the Interrelationship Between Temperature Rise, Light Transmission, and Polymerisation Kinetics of Bulk-Fill Composites.
The first seconds of light curing are crucial for the development of most properties of dental composites, especially for the 3s high-irradiance curing. This study investigated the influence of rapid high-irradiance curing on temporal development of temperature, transmittance and conversion of bulk-fill composites. Four materials were tested: Filtek One (FO), Tetric PowerFill (PFill), Tetric PowerFlow (PFlow) and SDR flow+ (SDR+) and cured with three curing units (LCU): Valo Cordles, Bluephase PowerCure and Translux Wave in 3s (3 W/cm2), 10s (1 W/cm2) and 20s (1 W/cm2) curing protocols. Light transmittance was measured at 2 and 4 mm, while temperature rise and polymerisation kinetics were evaluated at 4 mm depth during 5 min. Both light transmittance and temperature rise were greatest for SDR+ > PFlow > PFill > FO. The 20s curing protocol resulted in the highest degree of conversion (DC) for all materials and LCUs, but also contributed to the greatest temperature rise. Rapid curing with the 3s protocol caused the lowest temperature rise and the shortest time to reach maximum temperature. The polymerisation and temperature kinetics were strongly dependent on the material. The DC of PFill was statistically similar for 3s, 10s or 20s curing with BPC. Rapid curing is only recommended for materials developed for this purpose.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).