使用机器学习技术预测骨髓纤维化患者造血细胞移植后的不良生存率。

IF 23.1 1区 医学 Q1 HEMATOLOGY
Blood Pub Date : 2025-06-26 DOI:10.1182/blood.2024027287
Juan Carlos Hernández-Boluda, Adrián Mosquera-Orgueira, Luuk Gras, Linda Koster, Joe Tuffnell, Nicolaus Kröger, Massimiliano Gambella, Thomas Schroeder, Marie Robin, Katja Sockel, Jakob Passweg, Igor Wolfgang Blau, Ibrahim Yakoub-Agha, Ruben Van Dijck, Mattias Stelljes, Henrik Sengeloev, Jan Vydra, Uwe Platzbecker, Moniek de Witte, Frédéric Baron, Kristina Carlson, Javier Rojas, Carlos Pérez Míguez, Davide Crucitti, Kavita Raj, Joanna Drozd-Sokolowska, Giorgia Battipaglia, Nicola Polverelli, Tomasz Czerw, Donal P McLornan
{"title":"使用机器学习技术预测骨髓纤维化患者造血细胞移植后的不良生存率。","authors":"Juan Carlos Hernández-Boluda, Adrián Mosquera-Orgueira, Luuk Gras, Linda Koster, Joe Tuffnell, Nicolaus Kröger, Massimiliano Gambella, Thomas Schroeder, Marie Robin, Katja Sockel, Jakob Passweg, Igor Wolfgang Blau, Ibrahim Yakoub-Agha, Ruben Van Dijck, Mattias Stelljes, Henrik Sengeloev, Jan Vydra, Uwe Platzbecker, Moniek de Witte, Frédéric Baron, Kristina Carlson, Javier Rojas, Carlos Pérez Míguez, Davide Crucitti, Kavita Raj, Joanna Drozd-Sokolowska, Giorgia Battipaglia, Nicola Polverelli, Tomasz Czerw, Donal P McLornan","doi":"10.1182/blood.2024027287","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>With the incorporation of effective therapies for myelofibrosis (MF), accurately predicting outcomes after allogeneic hematopoietic cell transplantation (allo-HCT) is crucial for determining the optimal timing for this procedure. Using data from 5183 patients with MF who underwent first allo-HCT between 2005 and 2020 at European Society for Blood and Marrow Transplantation centers, we examined different machine learning (ML) models to predict overall survival after transplant. The cohort was divided into a training set (75%) and a test set (25%) for model validation. A random survival forests (RSF) model was developed based on 10 variables: patient age, comorbidity index, performance status, blood blasts, hemoglobin, leukocytes, platelets, donor type, conditioning intensity, and graft-versus-host disease prophylaxis. Its performance was compared with a 4-level Cox regression-based score and other ML-based models derived from the same data set, and with the Center for International Blood and Marrow Transplant Research score. The RSF outperformed all comparators, achieving better concordance indices across both primary and postessential thrombocythemia/polycythemia vera MF subgroups. The robustness and generalizability of the RSF model was confirmed by Akaike information criterion and time-dependent receiver operating characteristic area under the curve metrics in both sets. Although all models were prognostic for nonrelapse mortality, the RSF provided better curve separation, effectively identifying a high-risk group comprising 25% of patients. In conclusion, ML enhances risk stratification in patients with MF undergoing allo-HCT, paving the way for personalized medicine. A web application (https://gemfin.click/ebmt) based on the RSF model offers a practical tool to identify patients at high risk for poor transplantation outcomes, supporting informed treatment decisions and advancing individualized care.</p>","PeriodicalId":9102,"journal":{"name":"Blood","volume":" ","pages":"3139-3152"},"PeriodicalIF":23.1000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of machine learning techniques to predict poor survival after hematopoietic cell transplantation for myelofibrosis.\",\"authors\":\"Juan Carlos Hernández-Boluda, Adrián Mosquera-Orgueira, Luuk Gras, Linda Koster, Joe Tuffnell, Nicolaus Kröger, Massimiliano Gambella, Thomas Schroeder, Marie Robin, Katja Sockel, Jakob Passweg, Igor Wolfgang Blau, Ibrahim Yakoub-Agha, Ruben Van Dijck, Mattias Stelljes, Henrik Sengeloev, Jan Vydra, Uwe Platzbecker, Moniek de Witte, Frédéric Baron, Kristina Carlson, Javier Rojas, Carlos Pérez Míguez, Davide Crucitti, Kavita Raj, Joanna Drozd-Sokolowska, Giorgia Battipaglia, Nicola Polverelli, Tomasz Czerw, Donal P McLornan\",\"doi\":\"10.1182/blood.2024027287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>With the incorporation of effective therapies for myelofibrosis (MF), accurately predicting outcomes after allogeneic hematopoietic cell transplantation (allo-HCT) is crucial for determining the optimal timing for this procedure. Using data from 5183 patients with MF who underwent first allo-HCT between 2005 and 2020 at European Society for Blood and Marrow Transplantation centers, we examined different machine learning (ML) models to predict overall survival after transplant. The cohort was divided into a training set (75%) and a test set (25%) for model validation. A random survival forests (RSF) model was developed based on 10 variables: patient age, comorbidity index, performance status, blood blasts, hemoglobin, leukocytes, platelets, donor type, conditioning intensity, and graft-versus-host disease prophylaxis. Its performance was compared with a 4-level Cox regression-based score and other ML-based models derived from the same data set, and with the Center for International Blood and Marrow Transplant Research score. The RSF outperformed all comparators, achieving better concordance indices across both primary and postessential thrombocythemia/polycythemia vera MF subgroups. The robustness and generalizability of the RSF model was confirmed by Akaike information criterion and time-dependent receiver operating characteristic area under the curve metrics in both sets. Although all models were prognostic for nonrelapse mortality, the RSF provided better curve separation, effectively identifying a high-risk group comprising 25% of patients. In conclusion, ML enhances risk stratification in patients with MF undergoing allo-HCT, paving the way for personalized medicine. A web application (https://gemfin.click/ebmt) based on the RSF model offers a practical tool to identify patients at high risk for poor transplantation outcomes, supporting informed treatment decisions and advancing individualized care.</p>\",\"PeriodicalId\":9102,\"journal\":{\"name\":\"Blood\",\"volume\":\" \",\"pages\":\"3139-3152\"},\"PeriodicalIF\":23.1000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1182/blood.2024027287\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/blood.2024027287","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着骨髓纤维化(MF)有效治疗的结合,准确预测同种异体造血细胞移植(alloc - hct)后的结果对于确定该手术的最佳时机至关重要。利用2005年至2020年期间在EBMT中心接受首次alloo - hct的5183名MF患者的数据,我们研究了不同的机器学习(ML)模型来预测移植后的总生存期(OS)。将队列分为训练集(75%)和测试集(25%),用于模型验证。随机生存森林(RSF)模型基于10个变量:患者年龄、合并症指数、运动状态、造血母细胞、血红蛋白、白细胞、血小板、供体类型、调节强度和移植物抗宿主病预防。将其性能与基于四水平Cox回归的评分和来自同一数据集的其他基于ml的模型以及CIBMTR评分进行比较。RSF优于所有比较药物,在原发性和原发性血小板增多症/真性红细胞增多症MF亚组中获得了更好的一致性指数。两组受试者的Akaike信息准则和随时间变化的受试者工作特征(ROC)曲线下面积(AUC)指标证实了RSF模型的稳健性和泛化性。虽然所有模型都能预测非复发死亡率,但RSF提供了更好的曲线分离,有效地识别了25%的高危人群。总之,ML增强了接受同种异体hct治疗的MF患者的风险分层,为个性化治疗铺平了道路。一个基于RSF模型的web应用程序(https://gemfin.click/ebmt)提供了一个实用的工具来识别移植预后不良的高风险患者,支持明智的治疗决策和推进个体化护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of machine learning techniques to predict poor survival after hematopoietic cell transplantation for myelofibrosis.

Abstract: With the incorporation of effective therapies for myelofibrosis (MF), accurately predicting outcomes after allogeneic hematopoietic cell transplantation (allo-HCT) is crucial for determining the optimal timing for this procedure. Using data from 5183 patients with MF who underwent first allo-HCT between 2005 and 2020 at European Society for Blood and Marrow Transplantation centers, we examined different machine learning (ML) models to predict overall survival after transplant. The cohort was divided into a training set (75%) and a test set (25%) for model validation. A random survival forests (RSF) model was developed based on 10 variables: patient age, comorbidity index, performance status, blood blasts, hemoglobin, leukocytes, platelets, donor type, conditioning intensity, and graft-versus-host disease prophylaxis. Its performance was compared with a 4-level Cox regression-based score and other ML-based models derived from the same data set, and with the Center for International Blood and Marrow Transplant Research score. The RSF outperformed all comparators, achieving better concordance indices across both primary and postessential thrombocythemia/polycythemia vera MF subgroups. The robustness and generalizability of the RSF model was confirmed by Akaike information criterion and time-dependent receiver operating characteristic area under the curve metrics in both sets. Although all models were prognostic for nonrelapse mortality, the RSF provided better curve separation, effectively identifying a high-risk group comprising 25% of patients. In conclusion, ML enhances risk stratification in patients with MF undergoing allo-HCT, paving the way for personalized medicine. A web application (https://gemfin.click/ebmt) based on the RSF model offers a practical tool to identify patients at high risk for poor transplantation outcomes, supporting informed treatment decisions and advancing individualized care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Blood
Blood 医学-血液学
CiteScore
23.60
自引率
3.90%
发文量
955
审稿时长
1 months
期刊介绍: Blood, the official journal of the American Society of Hematology, published online and in print, provides an international forum for the publication of original articles describing basic laboratory, translational, and clinical investigations in hematology. Primary research articles will be published under the following scientific categories: Clinical Trials and Observations; Gene Therapy; Hematopoiesis and Stem Cells; Immunobiology and Immunotherapy scope; Myeloid Neoplasia; Lymphoid Neoplasia; Phagocytes, Granulocytes and Myelopoiesis; Platelets and Thrombopoiesis; Red Cells, Iron and Erythropoiesis; Thrombosis and Hemostasis; Transfusion Medicine; Transplantation; and Vascular Biology. Papers can be listed under more than one category as appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信