相对湿度和老化对燃烧非洲生物质燃料产生的有机气溶胶光学性质的影响。

IF 2.8 4区 环境科学与生态学 Q2 ENGINEERING, CHEMICAL
Aerosol Science and Technology Pub Date : 2024-10-11 eCollection Date: 2025-01-01 DOI:10.1080/02786826.2024.2412652
Megan M McRee, Vaios Moschos, Marc N Fiddler, Dario Massabò, Jason D Surratt, Solomon Bililign
{"title":"相对湿度和老化对燃烧非洲生物质燃料产生的有机气溶胶光学性质的影响。","authors":"Megan M McRee, Vaios Moschos, Marc N Fiddler, Dario Massabò, Jason D Surratt, Solomon Bililign","doi":"10.1080/02786826.2024.2412652","DOIUrl":null,"url":null,"abstract":"<p><p>Biomass burning (BB) is a major source of atmospheric fine carbonaceous aerosols, which play a significant, yet uncertain, role in modulating the Earth's radiation balance. However, accurately representing their optical properties in climate models remains challenging due to factors such as particle size, mixing state, combustion type, chemical composition, aging processes, and relative humidity (RH). In our study, we investigated BB organic-rich aerosols generated from smoldering sub-Saharan African biomass fuels. Fuel samples were collected in Africa and aerosols generated in the laboratory. We quantified key optical parameters, including mass cross-sections for extinction (2.04 ± 0.32 - 15.5 ± 2.48 m<sup>2</sup>/g), absorption (0.04 ± 0.01-0.3 ± 0.1 m<sup>2</sup>/g), and scattering (1.9 ± 0.68-15.3 ± 5.5 m<sup>2</sup>/g). Wavelength-dependent properties were used to determine absorption and scattering Ångström exponents. The single scattering albedo of these aerosols ranged from 0.8 ± 0.03 to 1.0 ± 0.04 and we observed a wavelength-dependent behavior. Extinction emission factors were determined at a wavelength of 550 nm, with values ranging from 42 ± 5 to 293 ± 32 m<sup>2</sup>/kg. Notably, optical properties exhibited fuel-type dependence, with differences observed between hardwood samples and other fuels, such as grass and animal dung. Aging increased mass extinction and scattering cross-sections at 550 nm, while humidity had the opposite effect across all fuels. Nitrate radical oxidation, both in photo and dark aging conditions, also influenced these properties. The findings are expected to close the gap in our understanding of optical properties of BB aerosol emissions in one of the least studied regions of the world - Africa - providing information to climate and air quality models for the region.</p>","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"59 5","pages":"544-566"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934956/pdf/","citationCount":"0","resultStr":"{\"title\":\"Influence of relative humidity and aging on the optical properties of organic aerosols from burning African biomass fuels.\",\"authors\":\"Megan M McRee, Vaios Moschos, Marc N Fiddler, Dario Massabò, Jason D Surratt, Solomon Bililign\",\"doi\":\"10.1080/02786826.2024.2412652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomass burning (BB) is a major source of atmospheric fine carbonaceous aerosols, which play a significant, yet uncertain, role in modulating the Earth's radiation balance. However, accurately representing their optical properties in climate models remains challenging due to factors such as particle size, mixing state, combustion type, chemical composition, aging processes, and relative humidity (RH). In our study, we investigated BB organic-rich aerosols generated from smoldering sub-Saharan African biomass fuels. Fuel samples were collected in Africa and aerosols generated in the laboratory. We quantified key optical parameters, including mass cross-sections for extinction (2.04 ± 0.32 - 15.5 ± 2.48 m<sup>2</sup>/g), absorption (0.04 ± 0.01-0.3 ± 0.1 m<sup>2</sup>/g), and scattering (1.9 ± 0.68-15.3 ± 5.5 m<sup>2</sup>/g). Wavelength-dependent properties were used to determine absorption and scattering Ångström exponents. The single scattering albedo of these aerosols ranged from 0.8 ± 0.03 to 1.0 ± 0.04 and we observed a wavelength-dependent behavior. Extinction emission factors were determined at a wavelength of 550 nm, with values ranging from 42 ± 5 to 293 ± 32 m<sup>2</sup>/kg. Notably, optical properties exhibited fuel-type dependence, with differences observed between hardwood samples and other fuels, such as grass and animal dung. Aging increased mass extinction and scattering cross-sections at 550 nm, while humidity had the opposite effect across all fuels. Nitrate radical oxidation, both in photo and dark aging conditions, also influenced these properties. The findings are expected to close the gap in our understanding of optical properties of BB aerosol emissions in one of the least studied regions of the world - Africa - providing information to climate and air quality models for the region.</p>\",\"PeriodicalId\":7474,\"journal\":{\"name\":\"Aerosol Science and Technology\",\"volume\":\"59 5\",\"pages\":\"544-566\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934956/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/02786826.2024.2412652\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02786826.2024.2412652","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

生物质燃烧(BB)是大气细碳质气溶胶的主要来源,在调节地球辐射平衡中起着重要但不确定的作用。然而,由于颗粒大小、混合状态、燃烧类型、化学成分、老化过程和相对湿度(RH)等因素的影响,在气候模式中准确表征它们的光学特性仍然具有挑战性。在我们的研究中,我们研究了闷烧撒哈拉以南非洲生物质燃料产生的富含BB有机物的气溶胶。燃料样本是在非洲收集的,气溶胶是在实验室产生的。我们量化了关键的光学参数,包括消光(2.04±0.32 - 15.5±2.48 m2/g)、吸收(0.04±0.01-0.3±0.1 m2/g)和散射(1.9±0.68-15.3±5.5 m2/g)的质量截面。波长相关的性质被用来确定吸收和散射Ångström指数。气溶胶的单次散射反照率范围为0.8±0.03 ~ 1.0±0.04,且具有波长依赖性。在波长550 nm处测定消光发射因子,其取值范围为42±5 ~ 293±32 m2/kg。值得注意的是,光学性质表现出燃料类型的依赖性,在硬木样品和其他燃料(如草和动物粪便)之间观察到差异。老化增加了550nm处的大灭绝和散射截面,而湿度对所有燃料都有相反的影响。在光老化和暗老化条件下,硝酸盐自由基氧化也会影响这些性能。这一发现有望缩小我们对世界上研究最少的地区之一——非洲——的BB气溶胶排放光学特性的理解差距,为该地区的气候和空气质量模型提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of relative humidity and aging on the optical properties of organic aerosols from burning African biomass fuels.

Biomass burning (BB) is a major source of atmospheric fine carbonaceous aerosols, which play a significant, yet uncertain, role in modulating the Earth's radiation balance. However, accurately representing their optical properties in climate models remains challenging due to factors such as particle size, mixing state, combustion type, chemical composition, aging processes, and relative humidity (RH). In our study, we investigated BB organic-rich aerosols generated from smoldering sub-Saharan African biomass fuels. Fuel samples were collected in Africa and aerosols generated in the laboratory. We quantified key optical parameters, including mass cross-sections for extinction (2.04 ± 0.32 - 15.5 ± 2.48 m2/g), absorption (0.04 ± 0.01-0.3 ± 0.1 m2/g), and scattering (1.9 ± 0.68-15.3 ± 5.5 m2/g). Wavelength-dependent properties were used to determine absorption and scattering Ångström exponents. The single scattering albedo of these aerosols ranged from 0.8 ± 0.03 to 1.0 ± 0.04 and we observed a wavelength-dependent behavior. Extinction emission factors were determined at a wavelength of 550 nm, with values ranging from 42 ± 5 to 293 ± 32 m2/kg. Notably, optical properties exhibited fuel-type dependence, with differences observed between hardwood samples and other fuels, such as grass and animal dung. Aging increased mass extinction and scattering cross-sections at 550 nm, while humidity had the opposite effect across all fuels. Nitrate radical oxidation, both in photo and dark aging conditions, also influenced these properties. The findings are expected to close the gap in our understanding of optical properties of BB aerosol emissions in one of the least studied regions of the world - Africa - providing information to climate and air quality models for the region.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerosol Science and Technology
Aerosol Science and Technology 环境科学-工程:化工
CiteScore
8.40
自引率
7.70%
发文量
73
审稿时长
3 months
期刊介绍: Aerosol Science and Technology publishes theoretical, numerical and experimental investigations papers that advance knowledge of aerosols and facilitate its application. Articles on either basic or applied work are suitable. Examples of topics include instrumentation for the measurement of aerosol physical, optical, chemical and biological properties; aerosol dynamics and transport phenomena; numerical modeling; charging; nucleation; nanoparticles and nanotechnology; lung deposition and health effects; filtration; and aerosol generation. Consistent with the criteria given above, papers that deal with the atmosphere, climate change, indoor and workplace environments, homeland security, pharmaceutical aerosols, combustion sources, aerosol synthesis reactors, and contamination control in semiconductor manufacturing will be considered. AST normally does not consider papers that describe routine measurements or models for aerosol air quality assessment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信