用于检测晚期慢性肝病的心电图机器学习模型的训练和性能。

IF 7.6 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
American Journal of Gastroenterology Pub Date : 2025-10-01 Epub Date: 2025-03-27 DOI:10.14309/ajg.0000000000003433
Puru Rattan, Joseph C Ahn, Beatriz Sordi Chara, Aidan F Mullan, Kan Liu, Zachi I Attia, Paul A Friedman, Alina Allen, Vijay H Shah, Patrick S Kamath, Peter A Noseworthy, Douglas A Simonetto
{"title":"用于检测晚期慢性肝病的心电图机器学习模型的训练和性能。","authors":"Puru Rattan, Joseph C Ahn, Beatriz Sordi Chara, Aidan F Mullan, Kan Liu, Zachi I Attia, Paul A Friedman, Alina Allen, Vijay H Shah, Patrick S Kamath, Peter A Noseworthy, Douglas A Simonetto","doi":"10.14309/ajg.0000000000003433","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Building on prior results, we hypothesized that an electrocardiogram (ECG)-enabled machine learning (ML) model could be used to detect advanced chronic liver disease (CLD).</p><p><strong>Methods: </strong>A cohort with CLD and 12-lead ECGs was matched with controls from electronic health records. A ML model was trained as a binary classifier.</p><p><strong>Results: </strong>There are 12,930 patients with CLD and 64,577 controls in the cohort. The model's discriminative ability to classify CLD showed an area under the receiver-operating characteristic curve 0.858 (95% confidence interval: 0.850-0.866), and at the chosen threshold, CLD ECGs had 12 times higher odds of being classified as CLD (diagnostic odds ratio 12.33, 95% confidence interval: 11.16-13.63).</p><p><strong>Discussion: </strong>An ECG-enabled ML model affords great promise in identifying advanced CLD in low resource areas.</p>","PeriodicalId":7608,"journal":{"name":"American Journal of Gastroenterology","volume":" ","pages":"2452-2456"},"PeriodicalIF":7.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Training and Performance of an Electrocardiogram-Enabled Machine Learning Model for Detection of Advanced Chronic Liver Disease.\",\"authors\":\"Puru Rattan, Joseph C Ahn, Beatriz Sordi Chara, Aidan F Mullan, Kan Liu, Zachi I Attia, Paul A Friedman, Alina Allen, Vijay H Shah, Patrick S Kamath, Peter A Noseworthy, Douglas A Simonetto\",\"doi\":\"10.14309/ajg.0000000000003433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Building on prior results, we hypothesized that an electrocardiogram (ECG)-enabled machine learning (ML) model could be used to detect advanced chronic liver disease (CLD).</p><p><strong>Methods: </strong>A cohort with CLD and 12-lead ECGs was matched with controls from electronic health records. A ML model was trained as a binary classifier.</p><p><strong>Results: </strong>There are 12,930 patients with CLD and 64,577 controls in the cohort. The model's discriminative ability to classify CLD showed an area under the receiver-operating characteristic curve 0.858 (95% confidence interval: 0.850-0.866), and at the chosen threshold, CLD ECGs had 12 times higher odds of being classified as CLD (diagnostic odds ratio 12.33, 95% confidence interval: 11.16-13.63).</p><p><strong>Discussion: </strong>An ECG-enabled ML model affords great promise in identifying advanced CLD in low resource areas.</p>\",\"PeriodicalId\":7608,\"journal\":{\"name\":\"American Journal of Gastroenterology\",\"volume\":\" \",\"pages\":\"2452-2456\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Gastroenterology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14309/ajg.0000000000003433\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14309/ajg.0000000000003433","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

引言:基于先前的结果,我们假设心电图(ECG)支持的机器学习(ML)模型可用于检测晚期CLD。方法:将CLD和12导联心电图的队列与电子健康记录的对照组相匹配。将机器学习模型训练为二元分类器。结果:队列中有12930例CLD患者和64577例对照。模型对CLD分类的判别能力AUC为0.858 (95% CI: 0.850-0.866),在选择的阈值下,CLD心电图被分类为CLD的几率高出12倍(DOR 12.33, 95% CI: 11.16-13.63)。讨论:支持ecg的ML模型在低资源地区识别高级CLD方面提供了很大的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training and Performance of an Electrocardiogram-Enabled Machine Learning Model for Detection of Advanced Chronic Liver Disease.

Introduction: Building on prior results, we hypothesized that an electrocardiogram (ECG)-enabled machine learning (ML) model could be used to detect advanced chronic liver disease (CLD).

Methods: A cohort with CLD and 12-lead ECGs was matched with controls from electronic health records. A ML model was trained as a binary classifier.

Results: There are 12,930 patients with CLD and 64,577 controls in the cohort. The model's discriminative ability to classify CLD showed an area under the receiver-operating characteristic curve 0.858 (95% confidence interval: 0.850-0.866), and at the chosen threshold, CLD ECGs had 12 times higher odds of being classified as CLD (diagnostic odds ratio 12.33, 95% confidence interval: 11.16-13.63).

Discussion: An ECG-enabled ML model affords great promise in identifying advanced CLD in low resource areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Gastroenterology
American Journal of Gastroenterology 医学-胃肠肝病学
CiteScore
11.40
自引率
5.10%
发文量
458
审稿时长
12 months
期刊介绍: Published on behalf of the American College of Gastroenterology (ACG), The American Journal of Gastroenterology (AJG) stands as the foremost clinical journal in the fields of gastroenterology and hepatology. AJG offers practical and professional support to clinicians addressing the most prevalent gastroenterological disorders in patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信