协同设计具有界面共价键的高倍率钠离子电池用无碳MoS2/MoO2异质结构阳极。

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jinhua Zhou, Tao Ji, Shengyang Xu, Xiong Wang, Juntao Wang, Yating Tang, Yuhong Li, Wenyu Yin, Hongmei Ji, Shaojun Shi, Gang Yang
{"title":"协同设计具有界面共价键的高倍率钠离子电池用无碳MoS2/MoO2异质结构阳极。","authors":"Jinhua Zhou,&nbsp;Tao Ji,&nbsp;Shengyang Xu,&nbsp;Xiong Wang,&nbsp;Juntao Wang,&nbsp;Yating Tang,&nbsp;Yuhong Li,&nbsp;Wenyu Yin,&nbsp;Hongmei Ji,&nbsp;Shaojun Shi,&nbsp;Gang Yang","doi":"10.1002/chem.202500589","DOIUrl":null,"url":null,"abstract":"<p>The development of hierarchical heterostructured materials for sodium-ion batteries (SIBs) remains hindered by suboptimal high-rate cycling performance, primarily due to phase interface pulverization and separation during charge–discharge processes. To address these challenges, we designed a carbon-free hierarchical structure comprising few-layered MoS₂ nanosheets and MoO₂ nanocrystals through precise compositional optimization and rational structural engineering. The heterogeneous components are interconnected through robust S─O covalent bonds, which theoretical calculations and experimental results confirm generate a built-in electric field at the heterointerfaces, significantly enhancing reaction kinetics. Crucially, these covalent bonds stabilize the heterointerfaces, improving structural integrity and mitigating electrode material agglomeration and pulverization. Additionally, the MoS₂/MoO₂ heterostructure enhances Na⁺ adsorption energetics and reduces Na⁺ diffusion barriers, facilitating efficient ion transport. Leveraging its abundant heterointerfaces and stable architecture, the composite delivers exceptional rate performance (432.7 mAh·g⁻¹ at 10 A·g⁻¹) and outstanding cycling stability (nearly 100% capacity retention over 400 cycles at 5 A·g⁻¹). This work provides a strategic framework for designing heterostructured materials with stable interface-rich architectures, advancing the development of high-performance conversion/alloy-type anodes for energy storage applications.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":"31 27","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistically Designed Carbon-Free MoS2/MoO2 Heterostructure Anodes with Interfacial Covalent Bonds for High-Rate Sodium-Ion Batteries\",\"authors\":\"Jinhua Zhou,&nbsp;Tao Ji,&nbsp;Shengyang Xu,&nbsp;Xiong Wang,&nbsp;Juntao Wang,&nbsp;Yating Tang,&nbsp;Yuhong Li,&nbsp;Wenyu Yin,&nbsp;Hongmei Ji,&nbsp;Shaojun Shi,&nbsp;Gang Yang\",\"doi\":\"10.1002/chem.202500589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of hierarchical heterostructured materials for sodium-ion batteries (SIBs) remains hindered by suboptimal high-rate cycling performance, primarily due to phase interface pulverization and separation during charge–discharge processes. To address these challenges, we designed a carbon-free hierarchical structure comprising few-layered MoS₂ nanosheets and MoO₂ nanocrystals through precise compositional optimization and rational structural engineering. The heterogeneous components are interconnected through robust S─O covalent bonds, which theoretical calculations and experimental results confirm generate a built-in electric field at the heterointerfaces, significantly enhancing reaction kinetics. Crucially, these covalent bonds stabilize the heterointerfaces, improving structural integrity and mitigating electrode material agglomeration and pulverization. Additionally, the MoS₂/MoO₂ heterostructure enhances Na⁺ adsorption energetics and reduces Na⁺ diffusion barriers, facilitating efficient ion transport. Leveraging its abundant heterointerfaces and stable architecture, the composite delivers exceptional rate performance (432.7 mAh·g⁻¹ at 10 A·g⁻¹) and outstanding cycling stability (nearly 100% capacity retention over 400 cycles at 5 A·g⁻¹). This work provides a strategic framework for designing heterostructured materials with stable interface-rich architectures, advancing the development of high-performance conversion/alloy-type anodes for energy storage applications.</p>\",\"PeriodicalId\":144,\"journal\":{\"name\":\"Chemistry - A European Journal\",\"volume\":\"31 27\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - A European Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202500589\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202500589","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

用于钠离子电池(sib)的分层异质结构材料的发展仍然受到高倍率循环性能不理想的阻碍,主要是由于在充放电过程中相界面的粉碎和分离。为了解决这些问题,我们通过精确的成分优化和合理的结构工程,设计了一种由少层MoS 2纳米片和MoS 2纳米晶体组成的无碳分层结构。理论计算和实验结果证实,异质组分之间通过强大的S-O共价键相互连接,在异质界面处产生了内置电场,显著增强了反应动力学。至关重要的是,这些共价键稳定了异质界面,提高了结构完整性,减轻了电极材料的团聚和粉碎。此外,MoS₂/MoO₂异质结构增强了Na⁺的吸附能,降低了Na⁺的扩散屏障,促进了离子的高效传输。利用其丰富的异质界面和稳定的结构,复合材料提供了卓越的速率性能(432.7 mAh·g⁻¹在10 A·g⁻¹下)和出色的循环稳定性(在5 A·g⁻¹下超过400次循环几乎100%的容量保持)。这项工作为设计具有稳定界面丰富结构的异质结构材料提供了战略框架,推动了用于储能应用的高性能转换/合金型阳极的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistically Designed Carbon-Free MoS2/MoO2 Heterostructure Anodes with Interfacial Covalent Bonds for High-Rate Sodium-Ion Batteries

Synergistically Designed Carbon-Free MoS2/MoO2 Heterostructure Anodes with Interfacial Covalent Bonds for High-Rate Sodium-Ion Batteries

Synergistically Designed Carbon-Free MoS2/MoO2 Heterostructure Anodes with Interfacial Covalent Bonds for High-Rate Sodium-Ion Batteries

Synergistically Designed Carbon-Free MoS2/MoO2 Heterostructure Anodes with Interfacial Covalent Bonds for High-Rate Sodium-Ion Batteries

Synergistically Designed Carbon-Free MoS2/MoO2 Heterostructure Anodes with Interfacial Covalent Bonds for High-Rate Sodium-Ion Batteries

The development of hierarchical heterostructured materials for sodium-ion batteries (SIBs) remains hindered by suboptimal high-rate cycling performance, primarily due to phase interface pulverization and separation during charge–discharge processes. To address these challenges, we designed a carbon-free hierarchical structure comprising few-layered MoS₂ nanosheets and MoO₂ nanocrystals through precise compositional optimization and rational structural engineering. The heterogeneous components are interconnected through robust S─O covalent bonds, which theoretical calculations and experimental results confirm generate a built-in electric field at the heterointerfaces, significantly enhancing reaction kinetics. Crucially, these covalent bonds stabilize the heterointerfaces, improving structural integrity and mitigating electrode material agglomeration and pulverization. Additionally, the MoS₂/MoO₂ heterostructure enhances Na⁺ adsorption energetics and reduces Na⁺ diffusion barriers, facilitating efficient ion transport. Leveraging its abundant heterointerfaces and stable architecture, the composite delivers exceptional rate performance (432.7 mAh·g⁻¹ at 10 A·g⁻¹) and outstanding cycling stability (nearly 100% capacity retention over 400 cycles at 5 A·g⁻¹). This work provides a strategic framework for designing heterostructured materials with stable interface-rich architectures, advancing the development of high-performance conversion/alloy-type anodes for energy storage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry - A European Journal
Chemistry - A European Journal 化学-化学综合
CiteScore
7.90
自引率
4.70%
发文量
1808
审稿时长
1.8 months
期刊介绍: Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields. Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world. All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times. The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems. Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信