色氨酸-犬尿氨酸轴靶向治疗HTR-8/SVneo滋养细胞增殖和迁移的原因不明复发性自然流产。

IF 3.1 2区 生物学 Q2 REPRODUCTIVE BIOLOGY
Pingping Jin, Xinyi Lu, Lu Wang, Yan Chen, Lan Yang, Yongxiang Yin, Ye Shen, Xinxin Ni, Daozhen Chen, Yun Zhang, Yu Chen
{"title":"色氨酸-犬尿氨酸轴靶向治疗HTR-8/SVneo滋养细胞增殖和迁移的原因不明复发性自然流产。","authors":"Pingping Jin, Xinyi Lu, Lu Wang, Yan Chen, Lan Yang, Yongxiang Yin, Ye Shen, Xinxin Ni, Daozhen Chen, Yun Zhang, Yu Chen","doi":"10.1093/biolre/ioaf040","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Recurrent spontaneous abortion (RSA) is associated with maternal-fetal interface dysfunction, particularly abnormal trophoblast invasion and proliferation. However, our understanding of the cause of RSA remains limited.</p><p><strong>Methods: </strong>Plasma Trp and Kyn levels were measured in two groups using ELISA. Immunofluorescence and western blot analyses were employed to evaluate the expression of IDO1, VEGFA, and proteins associated with epithelial-mesenchymal transition (EMT) in villous and decidual tissues from patients with recurrent spontaneous abortion (RSA). The effects of Tryptophan (Trp) and IDO1-driven Trp-Kynurenine (Kyn) metabolism on trophoblast proliferation, migration, EMT, and angiogenesis were investigated in the HTR-8/SVneo cell line using wound healing, transwell migration, quantitative real-time PCR (RT-qPCR), Western blotting, and tube formation assays. RNA sequencing identified differentially expressed genes in cells treated with 500 μM exogenous L-Trp.</p><p><strong>Results: </strong>RSA patients exhibited elevated plasma Trp levels and significantly reduced Kyn levels, indicating decreased IDO1 activity (as assessed by the Kyn/Trp ratio) compared to controls. IDO1, EMT-related proteins, and VEGFA were downregulated in RSA patient tissues. In vitro, L-Trp enhanced trophoblast migration, invasion, EMT, and microvasculature formation via IDO1 activation. The reduced functional capabilities induced by the IDO1 antagonist 1-MT (500 μM) were rescued by Kyn (300 μM). RNA sequencing revealed that L-Trp upregulation modulates trophoblast gene expression and functional pathways associated with amino acid metabolism, angiogenesis, and vasculature development.</p><p><strong>Discussion: </strong>Our study reveals a novel molecular mechanism by which Trp metabolism regulates HTR-8 cell function, suggesting that modulating IDO1 activity may represent a therapeutic strategy to improve trophoblast function and pregnancy outcomes in RSA.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Therapeutic targeting of the tryptophan-kynurenine Axis for HTR-8/SVneo trophoblast proliferation and migration in unexplained recurrent spontaneous abortion.\",\"authors\":\"Pingping Jin, Xinyi Lu, Lu Wang, Yan Chen, Lan Yang, Yongxiang Yin, Ye Shen, Xinxin Ni, Daozhen Chen, Yun Zhang, Yu Chen\",\"doi\":\"10.1093/biolre/ioaf040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Recurrent spontaneous abortion (RSA) is associated with maternal-fetal interface dysfunction, particularly abnormal trophoblast invasion and proliferation. However, our understanding of the cause of RSA remains limited.</p><p><strong>Methods: </strong>Plasma Trp and Kyn levels were measured in two groups using ELISA. Immunofluorescence and western blot analyses were employed to evaluate the expression of IDO1, VEGFA, and proteins associated with epithelial-mesenchymal transition (EMT) in villous and decidual tissues from patients with recurrent spontaneous abortion (RSA). The effects of Tryptophan (Trp) and IDO1-driven Trp-Kynurenine (Kyn) metabolism on trophoblast proliferation, migration, EMT, and angiogenesis were investigated in the HTR-8/SVneo cell line using wound healing, transwell migration, quantitative real-time PCR (RT-qPCR), Western blotting, and tube formation assays. RNA sequencing identified differentially expressed genes in cells treated with 500 μM exogenous L-Trp.</p><p><strong>Results: </strong>RSA patients exhibited elevated plasma Trp levels and significantly reduced Kyn levels, indicating decreased IDO1 activity (as assessed by the Kyn/Trp ratio) compared to controls. IDO1, EMT-related proteins, and VEGFA were downregulated in RSA patient tissues. In vitro, L-Trp enhanced trophoblast migration, invasion, EMT, and microvasculature formation via IDO1 activation. The reduced functional capabilities induced by the IDO1 antagonist 1-MT (500 μM) were rescued by Kyn (300 μM). RNA sequencing revealed that L-Trp upregulation modulates trophoblast gene expression and functional pathways associated with amino acid metabolism, angiogenesis, and vasculature development.</p><p><strong>Discussion: </strong>Our study reveals a novel molecular mechanism by which Trp metabolism regulates HTR-8 cell function, suggesting that modulating IDO1 activity may represent a therapeutic strategy to improve trophoblast function and pregnancy outcomes in RSA.</p>\",\"PeriodicalId\":8965,\"journal\":{\"name\":\"Biology of Reproduction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology of Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/biolre/ioaf040\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biolre/ioaf040","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

复发性自然流产(RSA)与母胎界面功能障碍有关,特别是滋养细胞侵袭和增殖异常。然而,我们对RSA原因的了解仍然有限。方法:采用ELISA法测定两组患者血浆中色氨酸(Trp)、Kyn水平。采用免疫荧光和western blot分析评估复发性自然流产(RSA)患者的绒毛组织和蜕膜组织中IDO1、VEGFA和上皮间质转化(EMT)相关蛋白的表达。在HTR-8/SVneo细胞系中,采用伤口愈合、transwell迁移、定量实时PCR (RT-qPCR)、Western blotting和成管实验研究了色氨酸(Trp)和ido1驱动的Trp-犬尿氨酸(Kyn)代谢对滋养细胞增殖、迁移、EMT和血管生成的影响。RNA测序鉴定了500 μM外源L-Trp处理细胞的差异表达基因。结果:RSA患者表现出血浆色氨酸水平升高,Kyn水平显著降低,表明与对照组相比,IDO1活性降低(通过Kyn/色氨酸比值评估)。在RSA患者组织中,IDO1、emt相关蛋白和VEGFA均下调。在体外,L-Trp通过IDO1激活增强滋养细胞迁移、侵袭、EMT和微血管形成。由IDO1拮抗剂1-MT (500 μM)诱导的功能下降被Kyn (300 μM)恢复。RNA测序显示,L-Trp上调可调节滋养细胞基因表达和氨基酸代谢、血管生成和脉管系统发育相关的功能途径。讨论:我们的研究揭示了Trp代谢调节HTR-8细胞功能的一种新的分子机制,表明调节IDO1活性可能是改善RSA滋养细胞功能和妊娠结局的一种治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Therapeutic targeting of the tryptophan-kynurenine Axis for HTR-8/SVneo trophoblast proliferation and migration in unexplained recurrent spontaneous abortion.

Introduction: Recurrent spontaneous abortion (RSA) is associated with maternal-fetal interface dysfunction, particularly abnormal trophoblast invasion and proliferation. However, our understanding of the cause of RSA remains limited.

Methods: Plasma Trp and Kyn levels were measured in two groups using ELISA. Immunofluorescence and western blot analyses were employed to evaluate the expression of IDO1, VEGFA, and proteins associated with epithelial-mesenchymal transition (EMT) in villous and decidual tissues from patients with recurrent spontaneous abortion (RSA). The effects of Tryptophan (Trp) and IDO1-driven Trp-Kynurenine (Kyn) metabolism on trophoblast proliferation, migration, EMT, and angiogenesis were investigated in the HTR-8/SVneo cell line using wound healing, transwell migration, quantitative real-time PCR (RT-qPCR), Western blotting, and tube formation assays. RNA sequencing identified differentially expressed genes in cells treated with 500 μM exogenous L-Trp.

Results: RSA patients exhibited elevated plasma Trp levels and significantly reduced Kyn levels, indicating decreased IDO1 activity (as assessed by the Kyn/Trp ratio) compared to controls. IDO1, EMT-related proteins, and VEGFA were downregulated in RSA patient tissues. In vitro, L-Trp enhanced trophoblast migration, invasion, EMT, and microvasculature formation via IDO1 activation. The reduced functional capabilities induced by the IDO1 antagonist 1-MT (500 μM) were rescued by Kyn (300 μM). RNA sequencing revealed that L-Trp upregulation modulates trophoblast gene expression and functional pathways associated with amino acid metabolism, angiogenesis, and vasculature development.

Discussion: Our study reveals a novel molecular mechanism by which Trp metabolism regulates HTR-8 cell function, suggesting that modulating IDO1 activity may represent a therapeutic strategy to improve trophoblast function and pregnancy outcomes in RSA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology of Reproduction
Biology of Reproduction 生物-生殖生物学
CiteScore
6.30
自引率
5.60%
发文量
214
审稿时长
1 months
期刊介绍: Biology of Reproduction (BOR) is the official journal of the Society for the Study of Reproduction and publishes original research on a broad range of topics in the field of reproductive biology, as well as reviews on topics of current importance or controversy. BOR is consistently one of the most highly cited journals publishing original research in the field of reproductive biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信