{"title":"基于纳米复合材料修饰的屏幕印刷电极的智能手机电化学DNA生物传感器快速、便携、灵敏检测产气荚膜梭菌cbb2基因的新策略","authors":"Qianyue Wu, Beiying Yang, Yutang Wang, Yanyan Xiong, Jinhua Zhang, Yangping Wen, Andreja Rajkovic","doi":"10.1007/s00604-025-07126-9","DOIUrl":null,"url":null,"abstract":"<div><p>An accurate, sensitive, low-cost, portable, and easy-to-use method for the quantitative detection of <i>Clostridium perfringens</i> (Cp), a zoonotic pathogen widely found in nature and capable of spreading through contaminated food or environments, is essential for epidemiology, prevention, and diagnostics. Here, we have designed a smartphone-based electrochemical DNA biosensor, which utilizes carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNTs) as the substrate, L-cysteine (L-Cys) as the linker, and a synergistic modification of the bioelectrode with gold nanoparticles (AuNPs) and polyamidoamine dendrimers (PAMAM). This design enables highly sensitive, low-cost, label-free, and portable detection of the cpb2 gene in Cp. The sensor not only enhances detection performance but also improves convenience and practicality. Differential pulse voltammetry (DPV) was used to monitor the electrochemical signal response to changes in target DNA concentration, enabling the tracking of the DNA hybridization process. Under optimized conditions, the biosensor exhibited a linear detection range from 10⁻<sup>14</sup> to 10⁻⁸ M, with a detection limit of 1.5 fM. It demonstrated excellent selectivity for the cpb2 gene and was successfully applied to detect variations in cpb2 gene content in wastewater and fecal DNA samples. Compared with the traditional method, the detection time of this method is short, the operation of professional and technical personnel is not required, the instrument is small and portable, and the single detection cost is significantly reduced. This study provides a new strategy for the rapid, portable, and highly sensitive detection of bacterial toxin genes in livestock and aquaculture.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel strategy for rapid, portable, and sensitive detection of Clostridium perfringens cpb2 gene using smartphone-based electrochemical DNA biosensor based on screen-printed electrodes modified with nanocomposite\",\"authors\":\"Qianyue Wu, Beiying Yang, Yutang Wang, Yanyan Xiong, Jinhua Zhang, Yangping Wen, Andreja Rajkovic\",\"doi\":\"10.1007/s00604-025-07126-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An accurate, sensitive, low-cost, portable, and easy-to-use method for the quantitative detection of <i>Clostridium perfringens</i> (Cp), a zoonotic pathogen widely found in nature and capable of spreading through contaminated food or environments, is essential for epidemiology, prevention, and diagnostics. Here, we have designed a smartphone-based electrochemical DNA biosensor, which utilizes carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNTs) as the substrate, L-cysteine (L-Cys) as the linker, and a synergistic modification of the bioelectrode with gold nanoparticles (AuNPs) and polyamidoamine dendrimers (PAMAM). This design enables highly sensitive, low-cost, label-free, and portable detection of the cpb2 gene in Cp. The sensor not only enhances detection performance but also improves convenience and practicality. Differential pulse voltammetry (DPV) was used to monitor the electrochemical signal response to changes in target DNA concentration, enabling the tracking of the DNA hybridization process. Under optimized conditions, the biosensor exhibited a linear detection range from 10⁻<sup>14</sup> to 10⁻⁸ M, with a detection limit of 1.5 fM. It demonstrated excellent selectivity for the cpb2 gene and was successfully applied to detect variations in cpb2 gene content in wastewater and fecal DNA samples. Compared with the traditional method, the detection time of this method is short, the operation of professional and technical personnel is not required, the instrument is small and portable, and the single detection cost is significantly reduced. This study provides a new strategy for the rapid, portable, and highly sensitive detection of bacterial toxin genes in livestock and aquaculture.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"192 4\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-025-07126-9\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07126-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A novel strategy for rapid, portable, and sensitive detection of Clostridium perfringens cpb2 gene using smartphone-based electrochemical DNA biosensor based on screen-printed electrodes modified with nanocomposite
An accurate, sensitive, low-cost, portable, and easy-to-use method for the quantitative detection of Clostridium perfringens (Cp), a zoonotic pathogen widely found in nature and capable of spreading through contaminated food or environments, is essential for epidemiology, prevention, and diagnostics. Here, we have designed a smartphone-based electrochemical DNA biosensor, which utilizes carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNTs) as the substrate, L-cysteine (L-Cys) as the linker, and a synergistic modification of the bioelectrode with gold nanoparticles (AuNPs) and polyamidoamine dendrimers (PAMAM). This design enables highly sensitive, low-cost, label-free, and portable detection of the cpb2 gene in Cp. The sensor not only enhances detection performance but also improves convenience and practicality. Differential pulse voltammetry (DPV) was used to monitor the electrochemical signal response to changes in target DNA concentration, enabling the tracking of the DNA hybridization process. Under optimized conditions, the biosensor exhibited a linear detection range from 10⁻14 to 10⁻⁸ M, with a detection limit of 1.5 fM. It demonstrated excellent selectivity for the cpb2 gene and was successfully applied to detect variations in cpb2 gene content in wastewater and fecal DNA samples. Compared with the traditional method, the detection time of this method is short, the operation of professional and technical personnel is not required, the instrument is small and portable, and the single detection cost is significantly reduced. This study provides a new strategy for the rapid, portable, and highly sensitive detection of bacterial toxin genes in livestock and aquaculture.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.