利用电荷补偿和局部表面等离子体共振效应调制K3AlF6:Mn4+ NCs的发光

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chen Yang  (, ), Yuhuan Tan  (, ), Zheyi Li  (, ), Shan Liang  (, ), Xi-Hua Guan  (, ), Zhong-Jian Yang  (, ), Shixun Lian  (, ), Wenli Zhou  (, )
{"title":"利用电荷补偿和局部表面等离子体共振效应调制K3AlF6:Mn4+ NCs的发光","authors":"Chen Yang \n (,&nbsp;),&nbsp;Yuhuan Tan \n (,&nbsp;),&nbsp;Zheyi Li \n (,&nbsp;),&nbsp;Shan Liang \n (,&nbsp;),&nbsp;Xi-Hua Guan \n (,&nbsp;),&nbsp;Zhong-Jian Yang \n (,&nbsp;),&nbsp;Shixun Lian \n (,&nbsp;),&nbsp;Wenli Zhou \n (,&nbsp;)","doi":"10.1007/s40843-024-3271-5","DOIUrl":null,"url":null,"abstract":"<div><p>The reduction in photoluminescence efficiency due to crystallite downsizing is a significant issue in Mn<sup>4+</sup> -doped fluoride nanomaterials, crucial for their application in full-color micro-LED displays. This study presents a strategy to enhance the photoluminescence efficiency of K<sub>3</sub>AlF<sub>6</sub>:Mn<sup>4+</sup> nanocrystals (NCs) by incorporating Mg<sup>2+</sup> for charge compensation and utilizing the plasmonic effect of Au nanorods. We found that Mg<sup>2+</sup> incorporation effectively reduced lattice defects, increasing photoluminescence intensity by 17% and internal quantum efficiency from 22.37% to 27.56%. Fabricating Au@SiO<sub>2</sub>/fluoride nanocomposites, we investigated how the SiO<sub>2</sub> spacer layer thickness, Au@SiO<sub>2</sub> resonance wavelength, and relative concentration affect photoluminescence properties. Optimizing the balance between Purcell and Förster resonance energy transfer effects further increased photoluminescence intensity by 25%, internal quantum efficiency to 32.09%, and external quantum efficiency from 14.20% to 18.05%. Additionally, we assessed the potential application of these nanocomposites in micro-LED display technology by examining nanocomposite-PMMA films. This work provides insights into the development of highly efficient red-emitting nanomaterials.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 4","pages":"1047 - 1056"},"PeriodicalIF":6.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating luminescence of K3AlF6:Mn4+ NCs via charge compensation and localized surface plasmon resonance effect\",\"authors\":\"Chen Yang \\n (,&nbsp;),&nbsp;Yuhuan Tan \\n (,&nbsp;),&nbsp;Zheyi Li \\n (,&nbsp;),&nbsp;Shan Liang \\n (,&nbsp;),&nbsp;Xi-Hua Guan \\n (,&nbsp;),&nbsp;Zhong-Jian Yang \\n (,&nbsp;),&nbsp;Shixun Lian \\n (,&nbsp;),&nbsp;Wenli Zhou \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-024-3271-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The reduction in photoluminescence efficiency due to crystallite downsizing is a significant issue in Mn<sup>4+</sup> -doped fluoride nanomaterials, crucial for their application in full-color micro-LED displays. This study presents a strategy to enhance the photoluminescence efficiency of K<sub>3</sub>AlF<sub>6</sub>:Mn<sup>4+</sup> nanocrystals (NCs) by incorporating Mg<sup>2+</sup> for charge compensation and utilizing the plasmonic effect of Au nanorods. We found that Mg<sup>2+</sup> incorporation effectively reduced lattice defects, increasing photoluminescence intensity by 17% and internal quantum efficiency from 22.37% to 27.56%. Fabricating Au@SiO<sub>2</sub>/fluoride nanocomposites, we investigated how the SiO<sub>2</sub> spacer layer thickness, Au@SiO<sub>2</sub> resonance wavelength, and relative concentration affect photoluminescence properties. Optimizing the balance between Purcell and Förster resonance energy transfer effects further increased photoluminescence intensity by 25%, internal quantum efficiency to 32.09%, and external quantum efficiency from 14.20% to 18.05%. Additionally, we assessed the potential application of these nanocomposites in micro-LED display technology by examining nanocomposite-PMMA films. This work provides insights into the development of highly efficient red-emitting nanomaterials.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 4\",\"pages\":\"1047 - 1056\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3271-5\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3271-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于晶体缩小而导致的光致发光效率降低是掺杂Mn4+氟纳米材料的一个重要问题,这对其在全彩微型led显示屏中的应用至关重要。本研究提出了一种通过加入Mg2+进行电荷补偿和利用Au纳米棒的等离子体效应来提高K3AlF6:Mn4+纳米晶体(NCs)光致发光效率的策略。我们发现Mg2+的掺入有效地减少了晶格缺陷,光致发光强度提高了17%,内部量子效率从22.37%提高到27.56%。制备Au@SiO2/氟化物纳米复合材料,研究了SiO2间隔层厚度、Au@SiO2共振波长和相对浓度对其光致发光性能的影响。优化Purcell和Förster共振能量传递效应之间的平衡,进一步将光致发光强度提高25%,内部量子效率提高到32.09%,外部量子效率从14.20%提高到18.05%。此外,我们通过检测纳米复合材料- pmma薄膜,评估了这些纳米复合材料在微型led显示技术中的潜在应用。这项工作为高效发红纳米材料的发展提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulating luminescence of K3AlF6:Mn4+ NCs via charge compensation and localized surface plasmon resonance effect

The reduction in photoluminescence efficiency due to crystallite downsizing is a significant issue in Mn4+ -doped fluoride nanomaterials, crucial for their application in full-color micro-LED displays. This study presents a strategy to enhance the photoluminescence efficiency of K3AlF6:Mn4+ nanocrystals (NCs) by incorporating Mg2+ for charge compensation and utilizing the plasmonic effect of Au nanorods. We found that Mg2+ incorporation effectively reduced lattice defects, increasing photoluminescence intensity by 17% and internal quantum efficiency from 22.37% to 27.56%. Fabricating Au@SiO2/fluoride nanocomposites, we investigated how the SiO2 spacer layer thickness, Au@SiO2 resonance wavelength, and relative concentration affect photoluminescence properties. Optimizing the balance between Purcell and Förster resonance energy transfer effects further increased photoluminescence intensity by 25%, internal quantum efficiency to 32.09%, and external quantum efficiency from 14.20% to 18.05%. Additionally, we assessed the potential application of these nanocomposites in micro-LED display technology by examining nanocomposite-PMMA films. This work provides insights into the development of highly efficient red-emitting nanomaterials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信