脉冲神经网络中基于ZnO扩散记忆电阻器的泄漏集成-点火和振荡神经元

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Liang Wang  (, ), Le Zhang  (, ), Shuaibin Hua  (, ), Qiuyun Fu  (, ), Xin Guo  (, )
{"title":"脉冲神经网络中基于ZnO扩散记忆电阻器的泄漏集成-点火和振荡神经元","authors":"Liang Wang \n (,&nbsp;),&nbsp;Le Zhang \n (,&nbsp;),&nbsp;Shuaibin Hua \n (,&nbsp;),&nbsp;Qiuyun Fu \n (,&nbsp;),&nbsp;Xin Guo \n (,&nbsp;)","doi":"10.1007/s40843-024-3236-6","DOIUrl":null,"url":null,"abstract":"<div><p>Diffusive threshold switching (TS) memristors have emerged as a promising candidate for artificial neurons, effectively replicating neuronal functions and enabling spiking neural networks (SNNs) to emulate the low-power processing of biological brains. In this study, we present an artificial neuron based on a Pt/Ag/ZnO/Pt volatile memristor, which exhibits exceptional TS characteristics, including electro-forming-free operation, low voltage requirements (&lt;0.2 V), high stability (2.25% variation over 1024 cycles), a high on/off ratio (10<sup>6</sup>), and inherent self-compliance. These Pt/Ag/ZnO/Pt diffusive memristors are employed to simultaneously emulate oscillation neurons and leaky integrate-and-fire (LIF) neurons, enabling precise modulation of oscillation and firing frequencies through pulse parameters while maintaining low energy consumption (1.442 nJ per spike). We further integrate the oscillation and LIF neurons as input and output neurons, respectively, in a two-layer SNN, achieving a high classification accuracy of 89.17% on MNIST-based voltage images. This work underscores the potential of ZnO diffusive memristors in emulating stable artificial neurons and highlights their promise for advanced neuromorphic computing applications using SNNs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 4","pages":"1212 - 1219"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leaky integrate-and-fire and oscillation neurons based on ZnO diffusive memristors for spiking neural networks\",\"authors\":\"Liang Wang \\n (,&nbsp;),&nbsp;Le Zhang \\n (,&nbsp;),&nbsp;Shuaibin Hua \\n (,&nbsp;),&nbsp;Qiuyun Fu \\n (,&nbsp;),&nbsp;Xin Guo \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-024-3236-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diffusive threshold switching (TS) memristors have emerged as a promising candidate for artificial neurons, effectively replicating neuronal functions and enabling spiking neural networks (SNNs) to emulate the low-power processing of biological brains. In this study, we present an artificial neuron based on a Pt/Ag/ZnO/Pt volatile memristor, which exhibits exceptional TS characteristics, including electro-forming-free operation, low voltage requirements (&lt;0.2 V), high stability (2.25% variation over 1024 cycles), a high on/off ratio (10<sup>6</sup>), and inherent self-compliance. These Pt/Ag/ZnO/Pt diffusive memristors are employed to simultaneously emulate oscillation neurons and leaky integrate-and-fire (LIF) neurons, enabling precise modulation of oscillation and firing frequencies through pulse parameters while maintaining low energy consumption (1.442 nJ per spike). We further integrate the oscillation and LIF neurons as input and output neurons, respectively, in a two-layer SNN, achieving a high classification accuracy of 89.17% on MNIST-based voltage images. This work underscores the potential of ZnO diffusive memristors in emulating stable artificial neurons and highlights their promise for advanced neuromorphic computing applications using SNNs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 4\",\"pages\":\"1212 - 1219\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3236-6\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3236-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

弥漫性阈值开关(TS)忆阻器已经成为人工神经元的一个很有前途的候选者,它可以有效地复制神经元功能,并使尖峰神经网络(snn)能够模拟生物大脑的低功耗处理。在这项研究中,我们提出了一种基于Pt/Ag/ZnO/Pt挥发性记忆电阻器的人工神经元,它具有优异的TS特性,包括无电形成操作、低电压要求(<0.2 V)、高稳定性(在1024周期内变化2.25%)、高通/关比(106)和固有的自顺应性。这些Pt/Ag/ZnO/Pt扩散记忆电阻器可以同时模拟振荡神经元和漏失集成点火(LIF)神经元,通过脉冲参数精确调制振荡和放电频率,同时保持低能耗(每尖峰1.442 nJ)。我们进一步将振荡神经元和LIF神经元分别作为输入神经元和输出神经元集成在双层SNN中,对基于mnist的电压图像实现了89.17%的高分类准确率。这项工作强调了ZnO扩散记忆电阻器在模拟稳定的人工神经元方面的潜力,并强调了它们在使用snn的高级神经形态计算应用中的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leaky integrate-and-fire and oscillation neurons based on ZnO diffusive memristors for spiking neural networks

Diffusive threshold switching (TS) memristors have emerged as a promising candidate for artificial neurons, effectively replicating neuronal functions and enabling spiking neural networks (SNNs) to emulate the low-power processing of biological brains. In this study, we present an artificial neuron based on a Pt/Ag/ZnO/Pt volatile memristor, which exhibits exceptional TS characteristics, including electro-forming-free operation, low voltage requirements (<0.2 V), high stability (2.25% variation over 1024 cycles), a high on/off ratio (106), and inherent self-compliance. These Pt/Ag/ZnO/Pt diffusive memristors are employed to simultaneously emulate oscillation neurons and leaky integrate-and-fire (LIF) neurons, enabling precise modulation of oscillation and firing frequencies through pulse parameters while maintaining low energy consumption (1.442 nJ per spike). We further integrate the oscillation and LIF neurons as input and output neurons, respectively, in a two-layer SNN, achieving a high classification accuracy of 89.17% on MNIST-based voltage images. This work underscores the potential of ZnO diffusive memristors in emulating stable artificial neurons and highlights their promise for advanced neuromorphic computing applications using SNNs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信