纤维素-银纳米复合材料的生态合成及其抗菌活性评价

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ibtissam Charti, Said Sair, Oussama Rafik, Younes Abboud, Abdeslam El Bouari
{"title":"纤维素-银纳米复合材料的生态合成及其抗菌活性评价","authors":"Ibtissam Charti,&nbsp;Said Sair,&nbsp;Oussama Rafik,&nbsp;Younes Abboud,&nbsp;Abdeslam El Bouari","doi":"10.1186/s11671-024-04156-9","DOIUrl":null,"url":null,"abstract":"<div><p>The integration of nanotechnology with cellulose matrices has gained considerable attention due to the resulting enhanced mechanical, thermal, and antibacterial properties. This study introduces a facile and environment-friendly microwave-assisted method for synthesizing cellulose/Ag nanocomposites. Palm date wood extract was used as an efficient reductant for silver ions, facilitating their deposition onto cellulose surface. The cellulose-silver nanocomposite was synthesized by reducing silver in situ on the surface of cellulose extracted from date palm wood fibers. The extraction involved a series of specific chemical treatments, including alkalization and whitening. The resulting nanocomposite was subjected to various characterization techniques. FTIR spectra showed the elimination of non-cellulosic components post chemical treatments, while XRD affirmed the presence of cellulose peaks. Experimental results indicated that the palm date wood extract was an effective reductant for silver ions favoring the formation of silver with higher crystallinity and mass content in the nanocomposites. Silver nanoparticles were identified within the cellulose matrix through Scanning Electron Microscopy (SEM). The FTIR spectral characterization studies demonstrated the existence of silver in the cellulose nanocomposites. Additionally, the XRD analysis confirmed the formation of silver peaks within these composites. Qualitative antibacterial tests towards gram negative (Escherichia coli) and gram positive (Micrococcus luteus) bacteria were carried out and the results showed that the Ag-MFCs effectively inhibit the growth of both types of bacteria, with 9–13 mm of inhibition zone for both the bacteria. The ecofriendly synthesis method using cellulose as a stabilizing agent proved to be effective in producing well-dispersed spherical AgNPs. The synthesized cellulose silver nanocomposite demonstrated notable antibacterial properties, indicating their potential for applications in medical and environmental fields. This study highlights the feasibility of using green synthesis methods to develop nanocomposites with significant antibacterial activity.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04156-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Ecofriendly synthesis of cellulose-silver nanocomposites and the evaluation of their antibacterial activity\",\"authors\":\"Ibtissam Charti,&nbsp;Said Sair,&nbsp;Oussama Rafik,&nbsp;Younes Abboud,&nbsp;Abdeslam El Bouari\",\"doi\":\"10.1186/s11671-024-04156-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The integration of nanotechnology with cellulose matrices has gained considerable attention due to the resulting enhanced mechanical, thermal, and antibacterial properties. This study introduces a facile and environment-friendly microwave-assisted method for synthesizing cellulose/Ag nanocomposites. Palm date wood extract was used as an efficient reductant for silver ions, facilitating their deposition onto cellulose surface. The cellulose-silver nanocomposite was synthesized by reducing silver in situ on the surface of cellulose extracted from date palm wood fibers. The extraction involved a series of specific chemical treatments, including alkalization and whitening. The resulting nanocomposite was subjected to various characterization techniques. FTIR spectra showed the elimination of non-cellulosic components post chemical treatments, while XRD affirmed the presence of cellulose peaks. Experimental results indicated that the palm date wood extract was an effective reductant for silver ions favoring the formation of silver with higher crystallinity and mass content in the nanocomposites. Silver nanoparticles were identified within the cellulose matrix through Scanning Electron Microscopy (SEM). The FTIR spectral characterization studies demonstrated the existence of silver in the cellulose nanocomposites. Additionally, the XRD analysis confirmed the formation of silver peaks within these composites. Qualitative antibacterial tests towards gram negative (Escherichia coli) and gram positive (Micrococcus luteus) bacteria were carried out and the results showed that the Ag-MFCs effectively inhibit the growth of both types of bacteria, with 9–13 mm of inhibition zone for both the bacteria. The ecofriendly synthesis method using cellulose as a stabilizing agent proved to be effective in producing well-dispersed spherical AgNPs. The synthesized cellulose silver nanocomposite demonstrated notable antibacterial properties, indicating their potential for applications in medical and environmental fields. This study highlights the feasibility of using green synthesis methods to develop nanocomposites with significant antibacterial activity.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-024-04156-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-024-04156-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04156-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米技术与纤维素基质的结合由于其增强的机械、热和抗菌性能而获得了相当大的关注。本研究介绍了一种简单、环保的微波辅助合成纤维素/银纳米复合材料的方法。棕榈枣木提取物作为银离子的有效还原剂,有利于银离子在纤维素表面的沉积。以枣椰木纤维为原料,原位还原纤维素表面的银,制备了纤维素-银纳米复合材料。提取过程包括一系列特殊的化学处理,包括碱化和美白。所得到的纳米复合材料进行了各种表征技术。FTIR光谱显示化学处理后非纤维素成分消失,而XRD证实纤维素峰的存在。实验结果表明,棕榈枣木提取物是银离子的有效还原剂,有利于在纳米复合材料中形成结晶度和质量含量较高的银。通过扫描电子显微镜(SEM)在纤维素基质中鉴定了银纳米颗粒。FTIR光谱表征研究证实了银在纤维素纳米复合材料中的存在。此外,XRD分析证实了复合材料中银峰的形成。对革兰氏阴性菌(大肠杆菌)和革兰氏阳性菌(黄体微球菌)进行了定性抑菌试验,结果表明ag - mfc对两种细菌的生长均有抑制作用,抑菌带均为9 ~ 13 mm。以纤维素为稳定剂的环保合成方法可有效制备分散良好的球形AgNPs。合成的纤维素银纳米复合材料具有显著的抗菌性能,表明其在医疗和环境领域的应用潜力。本研究强调了利用绿色合成方法制备具有显著抗菌活性的纳米复合材料的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ecofriendly synthesis of cellulose-silver nanocomposites and the evaluation of their antibacterial activity

The integration of nanotechnology with cellulose matrices has gained considerable attention due to the resulting enhanced mechanical, thermal, and antibacterial properties. This study introduces a facile and environment-friendly microwave-assisted method for synthesizing cellulose/Ag nanocomposites. Palm date wood extract was used as an efficient reductant for silver ions, facilitating their deposition onto cellulose surface. The cellulose-silver nanocomposite was synthesized by reducing silver in situ on the surface of cellulose extracted from date palm wood fibers. The extraction involved a series of specific chemical treatments, including alkalization and whitening. The resulting nanocomposite was subjected to various characterization techniques. FTIR spectra showed the elimination of non-cellulosic components post chemical treatments, while XRD affirmed the presence of cellulose peaks. Experimental results indicated that the palm date wood extract was an effective reductant for silver ions favoring the formation of silver with higher crystallinity and mass content in the nanocomposites. Silver nanoparticles were identified within the cellulose matrix through Scanning Electron Microscopy (SEM). The FTIR spectral characterization studies demonstrated the existence of silver in the cellulose nanocomposites. Additionally, the XRD analysis confirmed the formation of silver peaks within these composites. Qualitative antibacterial tests towards gram negative (Escherichia coli) and gram positive (Micrococcus luteus) bacteria were carried out and the results showed that the Ag-MFCs effectively inhibit the growth of both types of bacteria, with 9–13 mm of inhibition zone for both the bacteria. The ecofriendly synthesis method using cellulose as a stabilizing agent proved to be effective in producing well-dispersed spherical AgNPs. The synthesized cellulose silver nanocomposite demonstrated notable antibacterial properties, indicating their potential for applications in medical and environmental fields. This study highlights the feasibility of using green synthesis methods to develop nanocomposites with significant antibacterial activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信