具有增强NIR-II发光的稀土纳米晶体

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xuan Gao  (, ), Jing Feng  (, ), Li Miao  (, ), Kai Liu  (, ), Hongjie Zhang  (, )
{"title":"具有增强NIR-II发光的稀土纳米晶体","authors":"Xuan Gao \n (,&nbsp;),&nbsp;Jing Feng \n (,&nbsp;),&nbsp;Li Miao \n (,&nbsp;),&nbsp;Kai Liu \n (,&nbsp;),&nbsp;Hongjie Zhang \n (,&nbsp;)","doi":"10.1007/s40843-024-3232-y","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, fluorescent materials centered on the second near-infrared (NIR-II) window have emerged as a new research area of interest for prospective biomedical applications. Among the latest generation of NIR-II probes, rare earth nanocrystals (RE NCs) have distinguished themselves by their remarkable optical properties, such as high stability, large Stokes/anti-Stokes shift, a broad excitation spectral bandwidth, and a prolonged fluorescence lifetime. Particularly, via ingenious design and meticulous manipulation of the structure and composition, the energy transfer and photon transition during the luminescence process can be precisely regulated, thereby achieving substantial optimization of optical performance. In this review, we will briefly outline the NIR-II emission mechanism of RE NCs and focus on the luminescence enhancement strategies of the latest advancements, with the intention of furnishing valuable references for research in related fields.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 4","pages":"947 - 961"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rare earth nanocrystals with enhanced NIR-II luminescence\",\"authors\":\"Xuan Gao \\n (,&nbsp;),&nbsp;Jing Feng \\n (,&nbsp;),&nbsp;Li Miao \\n (,&nbsp;),&nbsp;Kai Liu \\n (,&nbsp;),&nbsp;Hongjie Zhang \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-024-3232-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, fluorescent materials centered on the second near-infrared (NIR-II) window have emerged as a new research area of interest for prospective biomedical applications. Among the latest generation of NIR-II probes, rare earth nanocrystals (RE NCs) have distinguished themselves by their remarkable optical properties, such as high stability, large Stokes/anti-Stokes shift, a broad excitation spectral bandwidth, and a prolonged fluorescence lifetime. Particularly, via ingenious design and meticulous manipulation of the structure and composition, the energy transfer and photon transition during the luminescence process can be precisely regulated, thereby achieving substantial optimization of optical performance. In this review, we will briefly outline the NIR-II emission mechanism of RE NCs and focus on the luminescence enhancement strategies of the latest advancements, with the intention of furnishing valuable references for research in related fields.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 4\",\"pages\":\"947 - 961\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3232-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3232-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,以第二近红外(NIR-II)窗口为中心的荧光材料已成为生物医学应用前景的一个新的研究领域。在最新一代NIR-II探针中,稀土纳米晶体(RE NCs)以其高稳定性、大Stokes/反Stokes位移、宽激发光谱带宽和长荧光寿命等显著的光学特性而备受关注。特别是,通过巧妙的设计和对结构和组成的细致操作,可以精确调节发光过程中的能量传递和光子跃迁,从而实现光学性能的实质性优化。本文将简要介绍稀土纳米材料的NIR-II发光机理,重点介绍其发光增强策略的最新进展,以期为相关领域的研究提供有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rare earth nanocrystals with enhanced NIR-II luminescence

In recent years, fluorescent materials centered on the second near-infrared (NIR-II) window have emerged as a new research area of interest for prospective biomedical applications. Among the latest generation of NIR-II probes, rare earth nanocrystals (RE NCs) have distinguished themselves by their remarkable optical properties, such as high stability, large Stokes/anti-Stokes shift, a broad excitation spectral bandwidth, and a prolonged fluorescence lifetime. Particularly, via ingenious design and meticulous manipulation of the structure and composition, the energy transfer and photon transition during the luminescence process can be precisely regulated, thereby achieving substantial optimization of optical performance. In this review, we will briefly outline the NIR-II emission mechanism of RE NCs and focus on the luminescence enhancement strategies of the latest advancements, with the intention of furnishing valuable references for research in related fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信